This article needs additional citations for verification .(August 2007) |
This is a comparison of standards of wireless networking technologies for devices such as mobile phones. A new generation of cellular standards has appeared approximately every tenth year since 1G systems were introduced in 1979 and the early to mid-1980s.
Global System for Mobile Communications (GSM, around 80–85% market share) and IS-95 (around 10–15% market share) were the two most prevalent 2G mobile communication technologies in 2007. [1] In 3G, the most prevalent technology was UMTS with CDMA-2000 in close contention.
All radio access technologies have to solve the same problems: to divide the finite RF spectrum among multiple users as efficiently as possible. GSM uses TDMA and FDMA for user and cell separation. UMTS, IS-95 and CDMA-2000 use CDMA. WiMAX and LTE use OFDM.
In theory, CDMA, TDMA and FDMA have exactly the same spectral efficiency but practically, each has its own challenges – power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.
For a classic example for understanding the fundamental difference of TDMA and CDMA, imagine a cocktail party where couples are talking to each other in a single room. The room represents the available bandwidth:
Generation | Technology | Feature | Encoding | Year of First Use | Roaming | Handset interoperability | Common Interference | Signal quality/coverage area | Frequency utilization/Call density | Handoff | Voice and Data at the same time |
---|---|---|---|---|---|---|---|---|---|---|---|
1G | FDMA | NMT | Analog | 1981 | Nordics and several other European countries | None | None | Good coverage due to low frequencies | Very low density | Hard | No |
2G | TDMA and FDMA | GSM | Digital | 1991 | Worldwide, all countries except Japan and South Korea | SIM card | Some electronics, e.g. amplifiers | Good coverage indoors on 850/900 MHz. Repeaters possible. 35 km hard limit. | Very low density | Hard | Yes GPRS Class A |
2G | CDMA | IS-95 (CDMA one) | Digital | 1995 | Limited | None | None | Unlimited cell size, low transmitter power permits large cells | Very low density | Soft | No |
3G | CDMA | IS-2000 (CDMA 2000) | Digital | 2000 / 2002 | Limited | RUIM (rarely used) | None | Unlimited cell size, low transmitter power permits large cells | Very low density | Soft | No EVDO / Yes SVDO [2] |
3G | W-CDMA | UMTS (3GSM) | Digital | 2001 | Worldwide | SIM card | None | Smaller cells and lower indoors coverage on 2100 MHz; equivalent coverage indoors and superior range to GSM on 850/900 MHz. | Very low density | Soft | Yes [3] |
4G | OFDMA | LTE | Digital | 2009 | Worldwide | SIM card | None | Smaller cells and lower coverage on the S band. | Very low density | Hard | No (data only) Voice possible through VoLTE or fallback to 2G/3G |
5G | OFDMA | NR | Digital | 2018 | Limited | SIM card | None | Dense cells on millimeter waves. | Very low density | Hard | No (data only) Voice possible through VoNR |
Network Compatibility | Standard or Revision |
---|---|
GSM (TDMA, 2G) | GSM (1991), GPRS (2000), EDGE (2003) |
cdmaOne (CDMA, 2G) | cdmaOne (1995) |
CDMA2000 (CDMA/TDMA, 3G) | EV-DO (1999), Rev. A (2006), Rev. B (2006), SVDO (2011) |
UMTS (CDMA, 3G) | UMTS (1999), HSDPA (2005), HSUPA (2007), HSPA+ (2009) |
4G | LTE (2009), LTE Advanced (2011), LTE Advanced Pro (2016) |
5G | NR (2018) |
This graphic compares the market shares of the different mobile standards.
In a fast-growing market, GSM/3GSM (red) grows faster than the market and is gaining market share, the CDMA family (blue) grows at about the same rate as the market, while other technologies (grey) are being phased out
As a reference, a comparison of mobile and non-mobile wireless Internet standards follows.
Parts of this article (those related to template) need to be updated.(November 2018) |
Common name | Family | Primary use | Radio tech | Downstream (Mbit/s) | Upstream (Mbit/s) | Notes |
---|---|---|---|---|---|---|
HSPA+ | 3GPP | Mobile Internet | CDMA/TDMA/FDD MIMO | 21 42 84 672 | 5.8 11.5 22 168 | HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s. |
LTE | 3GPP | Mobile Internet | OFDMA/TDMA/MIMO/SC-FDMA/for LTE-FDD/for LTE-TDD | 100 Cat3 150 Cat4 300 Cat5 25065 Cat17 1658 Cat19 (in 20 MHz FDD) [8] | 50 Cat3/4 75 Cat5 2119 Cat17 13563 Cat19 (in 20 MHz FDD) [8] | LTE-Advanced Pro offers rates in excess of 3 Gbit/s to mobile users. |
WiMax rel 1 | 802.16 | WirelessMAN | MIMO-SOFDMA | 37 (10 MHz TDD) | 17 (10 MHz TDD) | With 2x2 MIMO. [9] |
WiMax rel 1.5 | 802.16-2009 | WirelessMAN | MIMO-SOFDMA | 83 (20 MHz TDD) 141 (2x20 MHz FDD) | 46 (20 MHz TDD) 138 (2x20 MHz FDD) | With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009 [9] |
WiMAX rel 2.0 | 802.16m | WirelessMAN | MIMO-SOFDMA | 2x2 MIMO 110 (20 MHz TDD) 183 (2x20 MHz FDD) 4x4 MIMO 219 (20 MHz TDD) 365 (2x20 MHz FDD) | 2x2 MIMO 70 (20 MHz TDD) 188 (2x20 MHz FDD) 4x4 MIMO 140 (20 MHz TDD) 376 (2x20 MHz FDD) | Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s [9] |
Flash-OFDM | Flash-OFDM | Mobile Internet mobility up to 200 mph (350 km/h) | Flash-OFDM | 5.3 10.6 15.9 | 1.8 3.6 5.4 | Mobile range 30 km (18 miles) Extended range 55 km (34 miles) |
HIPERMAN | HIPERMAN | Mobile Internet | OFDM | 56.9 | ||
Wi-Fi | 802.11 (11ax) | Wireless LAN | OFDM/OFDMA/CSMA/MIMO/MU-MIMO/Half duplex | 9600 Wi-Fi 6 | Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km) | |
iBurst | 802.20 | Mobile Internet | HC-SDMA/TDD/MIMO | 95 | 36 | Cell Radius: 3–12 km Speed: 250 km/h Spectral Efficiency: 13 bits/s/Hz/cell Spectrum Reuse Factor: "1" |
EDGE Evolution | GSM | Mobile Internet | TDMA/FDD | 1.6 | 0.5 | 3GPP Release 7 |
UMTS W-CDMA HSPA (HSDPA+HSUPA) | 3GPP | Mobile Internet | CDMA/FDD CDMA/FDD/MIMO | 0.384 14.4 | 0.384 5.76 | HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s. |
UMTS-TDD | 3GPP | Mobile Internet | CDMA/TDD | 16 | Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA | |
EV-DO Rel. 0 EV-DO Rev.A EV-DO Rev.B | 3GPP2 | Mobile Internet | CDMA/FDD | 2.45 3.1 4.9xN | 0.15 1.8 1.8xN | Rev B note: N is the number of 1.25 MHz carriers used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received. |
Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available.
For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.
Code-division multiple access (CDMA) is a channel access method used by various radio communication technologies. CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies. To permit this without undue interference between the users, CDMA employs spread spectrum technology and a special coding scheme.
Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.
The Universal Mobile Telecommunications System (UMTS) is a 3G mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.
In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.
Integrated Digital Enhanced Network (iDEN) is a mobile telecommunications technology, developed by Motorola, which provides its users the benefits of a trunked radio and a cellular telephone. It was called the first mobile social network by many technology industry analysts. iDEN places more users in a given spectral space, compared to analog cellular and two-way radio systems, by using speech compression and time-division multiple access (TDMA).
Interim Standard 95 (IS-95) was the first digital cellular technology that used code-division multiple access (CDMA). It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.
Frequency-division multiple access (FDMA) is a channel access method used in some multiple-access protocols. FDMA allows multiple users to send data through a single communication channel, such as a coaxial cable or microwave beam, by dividing the bandwidth of the channel into separate non-overlapping frequency sub-channels and allocating each sub-channel to a separate user. Users can send data through a subchannel by modulating it on a carrier wave at the subchannel's frequency. It is used in satellite communication systems and telephone trunklines.
IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and most often referred to as TDMA, are a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.
A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.
Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system. It is a measure of how efficiently a limited frequency spectrum is utilized by the physical layer protocol, and sometimes by the medium access control.
GAIT is a wireless standard developed in 1999 that allows cross-operation of mobile telephone technologies. Phones compliant with the GAIT standard can operate on either contemporary GSM networks, or the legacy IS-136 TDMA and AMPS networks found extensively throughout North America.
The air interface, or access mode, is the communication link between the two stations in mobile or wireless communication. The air interface involves both the physical and data link layers of the OSI model for a connection.
Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.
Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access scheme. Originally known as Carrier Interferometry, it is also called linearly precoded OFDMA (LP-OFDMA). Like other multiple access schemes, it deals with the assignment of multiple users to a shared communication resource. SC-FDMA can be interpreted as a linearly precoded OFDMA scheme, in the sense that it has an additional DFT processing step preceding the conventional OFDMA processing.
In radio resource management for wireless and cellular networks, channel allocation schemes allocate bandwidth and communication channels to base stations, access points and terminal equipment. The objective is to achieve maximum system spectral efficiency in bit/s/Hz/site by means of frequency reuse, but still assure a certain grade of service by avoiding co-channel interference and adjacent channel interference among nearby cells or networks that share the bandwidth.
Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.
A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.
Opportunity-Driven Multiple Access (ODMA) is a UMTS communications relaying protocol standard first introduced by the European Telecommunication Standards Institute (ETSI) in 1996. ODMA has been adopted by the 3rd-Generation Partnership Project, 3GPP to improve the efficiency of UMTS networks using the TDD mode. One of the objectives of ODMA is to enhance the capacity and the coverage of radio transmissions towards the boundaries of the cell. While mobile stations under the cell coverage area can communicate directly with the base station, mobile stations outside the cell boundary can still access the network and communicating with the base station via multihop transmission. Mobile stations with high data rate inside the cell are used as multihop relays.
International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.