Mobile cloud computing

Last updated

Mobile Cloud Computing (MCC) is the combination of cloud computing and mobile computing to bring rich computational resources to mobile users, network operators, as well as cloud computing providers. [1] [2] [3] The ultimate goal of MCC is to enable execution of rich mobile applications on a plethora of mobile devices, with a rich user experience. [4] MCC provides business opportunities for mobile network operators as well as cloud providers. [5] [6] More comprehensively, MCC can be defined as "a rich mobile computing technology that leverages unified elastic resources of varied clouds and network technologies toward unrestricted functionality, storage, and mobility to serve a multitude of mobile devices anywhere, anytime through the channel of Ethernet or Internet regardless of heterogeneous environments and platforms based on the pay-as-you-use principle." [7]

Contents

Architecture

Mobile cloud architecture Mobile Cloud Architecture.jpg
Mobile cloud architecture

MCC uses computational augmentation approaches (computations are executed remotely instead of on the device) by which resource-constraint mobile devices can utilize computational resources of varied cloud-based resources. [2] In MCC, there are four types of cloud-based resources, namely distant immobile clouds, proximate immobile computing entities, proximate mobile computing entities, and hybrid (combination of the other three model). [2] [5] Giant clouds such as Amazon EC2 are in the distant immobile groups whereas cloudlet or surrogates are member of proximate immobile computing entities. Smartphones, tablets, handheld devices, and wearable computing devices are part of the third group of cloud-based resources which is proximate mobile computing entities. [5] [8]

Vodafone, [9] Orange and Verizon have started to offer cloud computing services for companies.

Challenges

In the MCC landscape, an amalgam of mobile computing, cloud computing, and communication networks (to augment smartphones) creates several complex challenges such as Mobile Computation Offloading, Seamless Connectivity, Long WAN Latency, Mobility Management, Context-Processing, Energy Constraint, Vendor/data Lock-in, Security and Privacy, [10] Elasticity that hinder MCC success and adoption. [5] [7]

Open research issues

Although significant research and development in MCC is available in the literature, efforts in the following domains is still lacking: [3] [7]

MCC research groups and activities

Several academic and industrial research groups in MCC have been emerging since last few years. Some of the MCC research groups in academia with large number of researchers and publications include:

See also

Related Research Articles

<span class="mw-page-title-main">Computing</span> Activity involving calculations or computing machinery

Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both hardware and software. Computing has scientific, engineering, mathematical, technological, and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, and software engineering.

Ubiquitous computing is a concept in software engineering, hardware engineering and computer science where computing is made to appear anytime and everywhere. In contrast to desktop computing, ubiquitous computing can occur using any device, in any location, and in any format. A user interacts with the computer, which can exist in many different forms, including laptop computers, tablets, smart phones and terminals in everyday objects such as a refrigerator or a pair of glasses. The underlying technologies to support ubiquitous computing include Internet, advanced middleware, operating system, mobile code, sensors, microprocessors, new I/O and user interfaces, computer networks, mobile protocols, location and positioning, and new materials.

In telecommunication, provisioning involves the process of preparing and equipping a network to allow it to provide new services to its users. In National Security/Emergency Preparedness telecommunications services, "provisioning" equates to "initiation" and includes altering the state of an existing priority service or capability.

A Rich Internet Application is a web application that has many of the characteristics of desktop application software. The concept is closely related to a single-page application, and may allow the user interactive features such as drag and drop, background menu, WYSIWYG editing, etc. The concept was first introduced in 2002 by Macromedia to describe Macromedia Flash MX product. Throughout the 2000-s, the term was generalized to describe browser-based applications developed with other competing browser plugin technologies including Java applets, Microsoft Silverlight.

<span class="mw-page-title-main">Edge computing</span> Distributed computing paradigm

Edge computing is a distributed computing model that brings computation and data storage closer to the sources of data. This often makes applications faster. More broadly, it refers to any design that pushes computation physically closer to a user, so as to reduce the latency compared to when an application runs on a single data centre.

<span class="mw-page-title-main">Cloud computing</span> Form of shared internet-based computing

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each of which is a data center. Cloud computing relies on sharing of resources to achieve coherence and typically uses a pay-as-you-go model, which can help in reducing capital expenses but may also lead to unexpected operating expenses for users.

<span class="mw-page-title-main">Tata Research Development and Design Centre</span>

Tata Research Development and Design Centre(TRDDC) is a software research centre in Pune, India, established by Tata Group's TCS in 1981. TRDDC undertakes research in Machine Learning, Software Engineering, Process Engineering and Systems Research.

Software-defined networking (SDN) is an approach to network management that enables dynamic and programmatically efficient network configuration to improve network performance and monitoring in a manner more akin to cloud computing than to traditional network management. SDN is meant to improve the static architecture of traditional networks and may be employed to centralize network intelligence in one network component by disassociating the forwarding process of network packets from the routing process. The control plane consists of one or more controllers, which are considered the brains of the SDN network, where the whole intelligence is incorporated. However, centralization has certain drawbacks related to security, scalability and elasticity.

Opportunistic mobile social networks are a form of mobile ad hoc networks that exploit the human social characteristics, such as similarities, daily routines, mobility patterns, and interests to perform the message routing and data sharing. In such networks, the users with mobile devices are able to form on-the-fly social networks to communicate with each other and share data objects.

IEEE Cloud Computing is a global initiative launched by IEEE to promote cloud computing, big data and related technologies, and to provide expertise and resources to individuals and enterprises involved in cloud computing.

Computation offloading is the transfer of resource intensive computational tasks to a separate processor, such as a hardware accelerator, or an external platform, such as a cluster, grid, or a cloud. Offloading to a coprocessor can be used to accelerate applications including: image rendering and mathematical calculations. Offloading computing to an external platform over a network can provide computing power and overcome hardware limitations of a device, such as limited computational power, storage, and energy.

Fog computing or fog networking, also known as fogging, is an architecture that uses edge devices to carry out a substantial amount of computation, storage, and communication locally and routed over the Internet backbone.

Multi-access edge computing (MEC), formerly mobile edge computing, is an ETSI-defined network architecture concept that enables cloud computing capabilities and an IT service environment at the edge of the cellular network and, more in general at the edge of any network. The basic idea behind MEC is that by running applications and performing related processing tasks closer to the cellular customer, network congestion is reduced and applications perform better. MEC technology is designed to be implemented at the cellular base stations or other edge nodes, and enables flexible and rapid deployment of new applications and services for customers. Combining elements of information technology and telecommunications networking, MEC also allows cellular operators to open their radio access network (RAN) to authorized third parties, such as application developers and content providers.

A cloudlet is a mobility-enhanced small-scale cloud datacenter that is located at the edge of the Internet. The main purpose of the cloudlet is supporting resource-intensive and interactive mobile applications by providing powerful computing resources to mobile devices with lower latency. It is a new architectural element that extends today's cloud computing infrastructure. It represents the middle tier of a 3-tier hierarchy: mobile device - cloudlet - cloud. A cloudlet can be viewed as a data center in a box whose goal is to bring the cloud closer. The cloudlet term was first coined by M. Satyanarayanan, Victor Bahl, Ramón Cáceres, and Nigel Davies, and a prototype implementation is developed by Carnegie Mellon University as a research project. The concept of cloudlet is also known as follow me cloud, and mobile micro-cloud.

An AI accelerator, deep learning processor, or neural processing unit (NPU) is a class of specialized hardware accelerator or computer system designed to accelerate artificial intelligence and machine learning applications, including artificial neural networks and machine vision. Typical applications include algorithms for robotics, Internet of Things, and other data-intensive or sensor-driven tasks. They are often manycore designs and generally focus on low-precision arithmetic, novel dataflow architectures or in-memory computing capability. As of 2024, a typical AI integrated circuit chip contains tens of billions of MOSFETs.

Safe Swiss Cloud is a Swiss-based cloud Infrastructure as a Service (IaaS) company. The company provides computing power, object storage and managed services.

<span class="mw-page-title-main">Atta ur Rehman Khan</span>

Atta ur Rehman Khan is a computer scientist and academician who has contributed to multiple domains of the field. According to a Stanford University report, he is among World's Top 2% Scientists. He is the founder of National Cyber Crime Forensics Lab Pakistan, which operates in partnership with NR3C. He has published numerous research articles and books. He is a senior member of IEEE and ACM.

<span class="mw-page-title-main">Pan Hui</span> Computer scientist

Pan Hui is a computer scientist at the University of Helsinki and The Hong Kong University of Science and Technology. He was elected as an International Fellow of the Royal Academy of Engineering (FREng) in 2020, a Fellow of the Institute of Electrical and Electronics Engineers (FIEEE), a Member of the Academia Europaea (MAE), and a Distinguished Scientist of the Association for Computing Machinery (ACM). He has been elected to the endowed professorship Nokia Chair in Data Science.

References

  1. Khan, A. u R.; Othman, M.; Madani, S. A.; Khan, S. U. (2014-01-01). "A Survey of Mobile Cloud Computing Application Models". IEEE Communications Surveys and Tutorials. 16 (1): 393–413. CiteSeerX   10.1.1.402.1725 . doi:10.1109/SURV.2013.062613.00160. ISSN   1553-877X. S2CID   3042864.
  2. 1 2 3 Abolfazli, Saeid; Sanaei, Zohreh; Ahmed, Ejaz; Gani, Abdullah; Buyya, Rajkumar (1 July 2013). "Cloud-Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges". IEEE Communications Surveys & Tutorials. 99 (pp): 337–368. arXiv: 1306.4956 . Bibcode:2013arXiv1306.4956A. doi:10.1109/SURV.2013.070813.00285. S2CID   5322364.
  3. 1 2 Fangming Liu, Peng Shu, Hai Jin, Linjie Ding, Jie Yu, Di Niu, Bo Li, "Gearing Resource-Poor Mobile Devices with Powerful Clouds: Architecture, Challenges and Applications Archived 2016-03-04 at the Wayback Machine ", IEEE Wireless Communications Magazine, Special Issue on Mobile Cloud Computing, vol. 20, no. 3, pp.14-22, June, 2013.
  4. Abolfazli, Saeid; Sanaei, Zohreh; Gani, Abdullah; Xia, Feng; Yang, Laurence T. (1 September 2013). "Rich Mobile Applications: Genesis, taxonomy, and open issues". Journal of Network and Computer Applications. 40: 345–362. doi:10.1016/j.jnca.2013.09.009.
  5. 1 2 3 4 Khan, A. u R.; Othman, M.; Xia, F.; Khan, A. N. (2015-05-01). "Context-Aware Mobile Cloud Computing and Its Challenges". IEEE Cloud Computing. 2 (3): 42–49. doi:10.1109/MCC.2015.62. ISSN   2325-6095. S2CID   16019778.
  6. Dinh, Hoang T. (2013). "A survey of mobile cloud computing: architecture, applications, and approaches". Wireless Communications and Mobile Computing. 13 (18): 1587–1611. doi: 10.1002/wcm.1203 .
  7. 1 2 3 Sanaei, Zohreh; Abolfazli, Saeid; Gani, Abdullah; Buyya, Rajkumar (1 January 2013). "Heterogeneity in Mobile Cloud Computing: Taxonomy and Open Challenges" (PDF). IEEE Communications Surveys & Tutorials. 16 (99): 369–392. doi:10.1109/SURV.2013.050113.00090. S2CID   8751555.
  8. Fernando, Niroshinie; Seng W. Loke; Wenny Rahayu (2013). "Mobile cloud computing: A survey". Future Generation Computer Systems. 29: 84–106. doi:10.1016/j.future.2012.05.023.
  9. "Archived copy" (PDF). Archived from the original (PDF) on 2011-06-26. Retrieved 2011-07-29.{{cite web}}: CS1 maint: archived copy as title (link)
  10. 1 2 3 Khan, Atta ur Rehman; Othman, Mazliza; Ali, Mazhar; Khan, Abdul Nasir; Madani, Sajjad Ahmad (2013-12-01). "Pirax: framework for application piracy control in mobile cloud environment". The Journal of Supercomputing. 68 (2): 753–776. doi:10.1007/s11227-013-1061-1. ISSN   0920-8542. S2CID   14880069.
  11. Peng Shu, Fangming Liu, Hai Jin, Min Chen, Feng Wen, Yupeng Qu, Bo Li, "eTime: Energy-Efficient Transmission between Cloud and Mobile Devices", in Proc. of IEEE INFOCOM (Mini-conference), Italy, April, 2013.
  12. Fangming Liu, Peng Shu, "eTime: Energy-Efficient Mobile Cloud Computing for Rich-Media Applications", IEEE COMSOC MMTC E-Letter (IEEE Communications Society, Multimedia Communications Technical Committee), vol. 8, no. 1, January 2013.
  13. 1 2 "MDCRG". King Saud University.
  14. "ICCLAB". Archived from the original on 2013-08-17. Retrieved 2013-08-17.
  15. "Mobile and Cloud Computing Laboratory (Mobile & Cloud Lab)". University of Tartu.
  16. "SmartLab Smartphone Programming Cloud Testbed". University of Cyprus.
  17. "MCN". www.mobile-cloud-networking.eu. Retrieved 2017-09-06.
  18. "Home". Service Engineering (ICCLab & SPLab). Retrieved 2017-09-06.
  19. "Willkommen an der ZHAW | ZHAW Zürcher Hochschule für Angewandte Wissenschaften". ZHAW Zürcher Hochschule für Angewandte Wissenschaften (in German). Retrieved 2017-09-06.