Radiotelephone

Last updated
Comparison of an amateur radio handheld transceiver, cell phone, and matchbox ICOM IC-2E and generetions of mobile phones.jpg
Comparison of an amateur radio handheld transceiver, cell phone, and matchbox

A radiotelephone (or radiophone) is a radio communication system for transmission of speech over radio. Radiotelephony means transmission of sound (audio) by radio, in contrast to radiotelegraphy , which is transmission of telegraph signals, or television , transmission of moving pictures and sound. The term may include radio broadcasting systems, which transmit audio one way to listeners, but usually refers to two-way radio systems for bidirectional person-to-person voice communication between separated users, such as CB radio or marine radio. In spite of the name, radiotelephony systems are not necessarily connected to or have anything to do with the telephone network, and in some radio services, including GMRS, [1] interconnection is prohibited.

Contents

Design

Mode of emission

The word phone has a long precedent beginning with early US wired voice systems. The term means voice as opposed to telegraph or Morse code. This would include systems fitting into the category of two-way radio or one-way voice broadcasts such as coastal maritime weather. The term is still popular in the amateur radio community and in US Federal Communications Commission regulations.

Modes of operation

A standard landline telephone allows both users to talk and listen simultaneously; effectively there are two open communication channels between the two end-to-end users of the system. In a radiotelephone system, this form of working, known as full-duplex, requires a radio system to simultaneously transmit and receive on two separate frequencies, which both wastes bandwidth and presents some technical challenges. It is, however, the most comfortable method of voice communication for users, and it is currently used in cell phones and was used in the former IMTS.

The most common method of working for radiotelephones is half-duplex, operation, which allows one person to talk and the other to listen alternately. If a single frequency is used, both parties take turns to transmit on it, known as simplex. Dual-frequency working or duplex splits the communication into two separate frequencies, but only one is used to transmit at a time with the other frequency dedicated to receiving.

The user presses a special switch on the transmitter when they wish to talk—this is called the "press-to-talk" switch or PTT. It is usually fitted on the side of the microphone or other obvious position. Users may use a procedural code-word such as "over" to signal that they have finished transmitting. [2]

Features

Radiotelephones may operate at any frequency where they are licensed to do so, though typically they are used in the various bands between 60 and 900 MHz (25 and 960 MHz in the United States). They may use simple modulation schemes such as AM or FM, or more complex techniques such as digital coding, spread spectrum, and so on. Licensing terms for a given band will usually specify the type of modulation to be used. For example, airband radiotelephones used for air to ground communication between pilots and controllers operates in the VHF band from 118.0 to 136.975 MHz, using amplitude modulation.

Radiotelephone receivers are usually designed to a very high standard, and are usually of the double-conversion superhet design. Likewise, transmitters are carefully designed to avoid unwanted interference and feature power outputs from a few tens of milliwatts to perhaps 50 watts for a mobile unit, up to a couple of hundred watts for a base station. Multiple channels are often provided using a frequency synthesizer.

Receivers usually feature a squelch circuit to cut off the audio output from the receiver when there is no transmission to listen to. This is in contrast to broadcast receivers, which often dispense with this.

Privacy and selective calling

Often, on a small network system, there are many mobile units and one main base station. This would be typical for police or taxi services for example. To help direct messages to the correct recipients and avoid irrelevant traffic on the network's being a distraction to other units, a variety of means have been devised to create addressing systems.

The crudest and oldest of these is called CTCSS, or Continuous Tone-Controlled Squelch System. This consists of superimposing a precise very low frequency tone on the audio signal. Only the receiver tuned to this specific tone turns the signal into audio: this receiver shuts off the audio when the tone is not present or is a different frequency. By assigning a unique frequency to each mobile, private channels can be imposed on a public network. However this is only a convenience feature—it does not guarantee privacy.

A more commonly used system is called selective calling or Selcall. This also uses audio tones, but these are not restricted to sub-audio tones and are sent as a short burst in sequence. The receiver will be programmed to respond only to a unique set of tones in a precise sequence, and only then will it open the audio circuits for open-channel conversation with the base station. This system is much more versatile than CTCSS, as relatively few tones yield a far greater number of "addresses". In addition, special features (such as broadcast modes and emergency overrides) can be designed in, using special addresses set aside for the purpose. A mobile unit can also broadcast a Selcall sequence with its unique address to the base, so the user can know before the call is picked up which unit is calling. In practice many selcall systems also have automatic transponding built in, which allows the base station to "interrogate" a mobile even if the operator is not present. Such transponding systems usually have a status code that the user can set to indicate what they are doing. Features like this, while very simple, are one reason why they are very popular with organisations that need to manage a large number of remote mobile units. Selcall is widely used, though is becoming superseded by much more sophisticated digital systems.

Uses

Conventional telephone use

Mobile radio telephone systems such as Mobile Telephone Service and Improved Mobile Telephone Service allowed a mobile unit to have a telephone number allowing access from the general telephone network, although some systems required mobile operators to set up calls to mobile stations. Mobile radio telephone systems before the introduction of cellular telephone services suffered from few usable channels, heavy congestion, and very high operating costs.

Marine use

The Marine Radiotelephone Service or HF ship-to-shore operates on shortwave radio frequencies, using single-sideband modulation. The usual method is that a ship calls a shore station, and the shore station's marine operator connects the caller to the public switched telephone network. This service is retained for safety reasons, but in practice has been made obsolete by satellite telephones (particularly INMARSAT) and VoIP telephone and email via satellite internet.

Short wave radio is used because it bounces between the ionosphere and the ground, giving a modest 1,000 watt transmitter (the standard power) a worldwide range.

Most shore stations monitor several frequencies. The frequencies with the longest range are usually near 20 MHz, but the ionospheric weather (propagation) can dramatically change which frequencies work best.

Single-sideband (SSB) is used because the short wave bands are crowded with many users, and SSB permits a single voice channel to use a narrower range of radio frequencies (bandwidth), about 3.5 kHz. In comparison, AM radio uses about 8 kHz, and narrowband (voice or communication-quality) FM uses 9 kHz.

Marine radiotelephony first became common in the 1930s, and was used extensively for communications to ships and aircraft over water. In that time, most long-range aircraft had long-wire antennas that would be let out during a call, and reeled-in afterward. Marine radiotelephony originally used AM mode in the 2-3 MHz region before the transition to SSB and the adoption of various higher frequency bands in addition to the 2 MHz frequencies.

One of the most important uses of marine radiotelephony has been to change ships' itineraries, and to perform other business at sea.

Regulations

In the United States, since the Communications Act of 1934 the Federal Communications Commission (FCC) has issued various commercial "radiotelephone operator" licenses and permits to qualified applicants. These allow them to install, service, and maintain voice-only radio transmitter systems for use on ships and aircraft. [3] (Until deregulation in the 1990s they were also required for commercial domestic radio and television broadcast systems. Because of treaty obligations they are still required for engineers of international shortwave broadcast stations.) The certificate currently issued is the general radiotelephone operator license.

See also

Notes

  1. "47 CFR 95.141 - Interconnection prohibited".
  2. "Guide to Radio Communications Standards for DEM Emergency Responders" (PDF). DEM. Rhode Island Department of Environmental Management. Retrieved 8 February 2018.
  3. "Archived copy". Archived from the original on 2009-02-15. Retrieved 2009-01-27.CS1 maint: archived copy as title (link)

Related Research Articles

Amplitude modulation Radio modulation via wave amplitude

Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio carrier wave. In amplitude modulation, the amplitude of the carrier wave is varied in proportion to that of the message signal, such as an audio signal. This technique contrasts with angle modulation, in which either the frequency of the carrier wave is varied as in frequency modulation, or its phase, as in phase modulation.

Packet radio form of amateur radio data communications using the AX25 protocol

Packet radio is a digital radio communications mode used to send packets of data. Packet radio uses packet switching to transmit datagrams. This is very similar to how packets of data are transferred between nodes on the Internet. Packet radio can be used to transmit data long distances.

Single-sideband modulation Type of modulation

In radio communications, single-sideband modulation (SSB) or single-sideband suppressed-carrier modulation (SSB-SC) is a type of modulation used to transmit information, such as an audio signal, by radio waves. A refinement of amplitude modulation, it uses transmitter power and bandwidth more efficiently. Amplitude modulation produces an output signal the bandwidth of which is twice the maximum frequency of the original baseband signal. Single-sideband modulation avoids this bandwidth increase, and the power wasted on a carrier, at the cost of increased device complexity and more difficult tuning at the receiver.

In radio communication, a transceiver is a device that is able to both transmit and receive information through a transmission medium. It is a combination of a transmitter and a receiver, hence the name transceiver. Transmission is usually accomplished via radio waves, but communications satellites, wired connections, and optical fiber systems can also be used.

Shortwave radio Radio transmissions using wavelengths between 10 and 100 m

Shortwave radio is radio transmission using shortwave radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3–30 MHz ; above the medium frequency band (MF), to the bottom of the VHF band.

Citizens band radio Land mobile radio system

Citizens band radio, used in many countries, is a land mobile radio system, a system allowing short-distance person-to-person bidirectional voice communication between individuals, using two way radios operating on 40 channels near 27 MHz (11 m) in the high frequency band. Citizens band is distinct from other personal radio service allocations such as FRS, GMRS, MURS, UHF CB and the Amateur Radio Service. In many countries, CB operation does not require a license, and it may be used for business or personal communications. Like many other land mobile radio services, multiple radios in a local area share a single frequency channel, but only one can transmit at a time. The radio is normally in receive mode to receive transmissions of other radios on the channel; when users want to talk they press a "push to talk" button on their radio, which turns on their transmitter. Users on a channel must take turns talking. Transmitter power is limited to 4 watts in the US and the EU. CB radios have a range of about 3 miles (4.8 km) to 20 miles (32 km) depending on terrain, for line of sight communication; however, various radio propagation conditions may intermittently allow communication over much greater distances.

AM broadcasting Radio broadcasting using amplitude modulation

AM broadcasting is a radio broadcasting technology, which employs amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave transmissions, but also on the longwave and shortwave radio bands.

Walkie-talkie hand-held two-way radio communication device

A walkie-talkie, more formally known as a handheld transceiver (HT), is a hand-held, portable, two-way radio transceiver. Its development during the Second World War has been variously credited to Donald Hings, radio engineer Alfred J. Gross, Henryk Magnuski and engineering teams at Motorola. First used for infantry, similar designs were created for field artillery and tank units, and after the war, walkie-talkies spread to public safety and eventually commercial and jobsite work.

The International Telecommunication Union uses an internationally agreed system for classifying radio frequency signals. Each type of radio emission is classified according to its bandwidth, method of modulation, nature of the modulating signal, and type of information transmitted on the carrier signal. It is based on characteristics of the signal, not on the transmitter used.

Marine VHF radio Radios operating in the very high frequency maritime mobile band

Marine VHF radio is a worldwide system of two way radio transceivers on ships and watercraft used for bidirectional voice communication from ship-to-ship, ship-to-shore, and in certain circumstances ship-to-aircraft. It uses FM channels in the very high frequency (VHF) radio band in the frequency range between 156 and 174 MHz, inclusive. In the official language of the International Telecommunication Union the band is called the VHF maritime mobile band. In some countries additional channels are used, such as the L and F channels for leisure and fishing vessels in the Nordic countries. Transmitter power is limited to 25 watts, giving them a range of about 100 kilometres.

Beat frequency oscillator device to convert Morse code radio signals into audible tones

In a radio receiver, a beat frequency oscillator or BFO is a dedicated oscillator used to create an audio frequency signal from Morse code radiotelegraphy (CW) transmissions to make them audible. The signal from the BFO is mixed with the received signal to create a heterodyne or beat frequency which is heard as a tone in the speaker. BFOs are also used to demodulate single-sideband (SSB) signals, making them intelligible, by essentially restoring the carrier that was suppressed at the transmitter. BFOs are sometimes included in communications receivers designed for short wave listeners; they are almost always found in communication receivers for amateur radio, which often receive CW and SSB signals.

Radiotelephony procedure includes various techniques used to clarify, simplify and standardize spoken communications over two-way radios, in use by the armed forces, in civil aviation, police and fire dispatching systems, citizens' band radio (CB), and amateur radio.

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 30 Hz to 300 GHz. Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).

Professional mobile radio Field radio communications systems

Professional mobile radio are person-to-person two-way radio voice communications systems which use portable, mobile, base station, and dispatch console radios. PMR radio systems are based on such standards as MPT-1327, TETRA, APCO 25, and DMR which are designed for dedicated use by specific organizations, or standards such as NXDN intended for general commercial use. These systems are used by police, fire, ambulance, and emergency services, and by commercial firms such as taxis and delivery services. Most systems are half-duplex, in which multiple radios share a common radio channel, and only one can transmit at a time. Transceivers are normally in receive mode, the user presses a push-to-talk button on his microphone when he wants to talk, which turns on his transmitter and turns off his receiver. They use channels in the VHF and UHF bands, giving them a limited range, usually 3 to 20 miles depending on terrain. Output power is typically limited to 4 watts. Repeaters installed on tall buildings, hills or mountain peaks are used to increase the range of systems.

Cordless telephone

A cordless telephone or portable telephone is a telephone in which the handset is portable but able to be used like landline phone communication, only it operates by radio frequency transmission and not a physical insulated wire, or telephone line. The base station is connected to the telephone network through a telephone line as a corded telephone is, and also serves as a charger to charge the handset's batteries. The range is limited, usually to the same building or some short distance from the base station.

Two-way radio A radio that can both transmit and receive a signal, used for bidirectional voice communication

A two-way radio is a radio that can both transmit and receive radio waves, unlike a broadcast receiver which only receives content. It is an audio (sound) transceiver, a transmitter and receiver in one unit, used for bidirectional person-to-person voice communication with other users with similar radios. Two-way radios are available in stationary, mobile, and hand-held portable models. Hand-held two-way radios are often called walkie-talkies, handie-talkies or hand-helds. Two-way radios are used by groups of geographically separated people who need to keep in continuous voice communication, such as aircraft pilots and air traffic controllers, ship captains and harbormasters, emergency services personnel like firemen, policemen, and ambulance paramedics, taxi and delivery services, soldiers and military units, fast food and warehouse employees, and radio amateurs.

A land mobile radio system (LMRS) is a person-to-person voice communication system consisting of two-way radio transceivers which can be stationary, mobile, or portable. Public land mobile radio systems are made for use exclusively by public safety organizations such as police, fire, and ambulance services, and other governmental organizations, and use special frequencies reserved for these services. Private land mobile radio systems are designed for private commercial use, by firms such as taxis or delivery services. Most systems are half-duplex, with multiple radios sharing a single radio channel, so only one radio can transmit at a time. The transceiver is normally in receiving mode so the user can hear other radios on the channel; when a user wants to talk he presses a push to talk button on his microphone, which turns on his transmitter. They use channels in the VHF or UHF bands and transmitter power is usually limited to around 5 watts, giving them a limited range, usually 3 to 20 miles depending on terrain, although repeaters installed on tall buildings, hills or mountain peaks can be used to increase the coverage area. Older systems use AM or FM modulation, while some recent systems use digital modulation allowing them to transmit data as well as sound.

Amateur radio repeater A combined receiver and transmitter that retransmits signals, extending their range

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

Mobile radio

Mobile radio or mobiles refer to wireless communications systems and devices which are based on radio frequencies(using commonly UHF or VHF frequencies), and where the path of communications is movable on either end. There are a variety of views about what constitutes mobile equipment. For US licensing purposes, mobiles may include hand-carried,, equipment. An obsolete term is radiophone.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications.

References