In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. [1] The term is a blend of transmitter and responder. [2] [3]
In air navigation or radio frequency identification, a flight transponder is an automated transceiver in an aircraft that emits a coded identifying signal in response to an interrogating received signal.
In a communications satellite, a satellite transponder receives signals over a range of uplink frequencies, usually from a satellite ground station; the transponder amplifies them, and re-transmits them on a different set of downlink frequencies to receivers on Earth, often without changing the content of the received signal or signals.
A communications satellite’s channels are called transponders because each is a separate transceiver or repeater. With digital video data compression and multiplexing, several video and audio channels may travel through a single transponder on a single wideband carrier. Original analog video only has one channel per transponder, with subcarriers for audio and automatic transmission identification service (ATIS). Non-multiplexed radio stations can also travel in single channel per carrier (SCPC) mode, with multiple carriers (analog or digital) per transponder. This allows each station to transmit directly to the satellite, rather than paying for a whole transponder, or using landlines to send it to an earth station for multiplexing with other stations.
In fiber-optic communications, a transponder is the element that sends and receives the optical signal from a fiber. A transponder is typically characterized by its data rate and the maximum distance the signal can travel.
The term "transponder" can apply to different items with important functional differences, mentioned across academic and commercial literature:
As a result, differences in transponder functionality also might influence the functional description of related optical modules like transceivers and muxponders.
Another type of transponder occurs in identification friend or foe (IFF) systems in military aviation and in air traffic control secondary surveillance radar (beacon radar) systems for general aviation and commercial aviation. [7]
Primary radar works best with large all-metal aircraft, but not so well on small, composite aircraft. Its range is also limited by terrain and rain or snow and also detects unwanted objects such as automobiles, hills and trees. Furthermore, it cannot always estimate the altitude of an aircraft. Secondary radar overcomes these limitations but it depends on a transponder in the aircraft to respond to interrogations from the ground station to make the plane more visible.[ citation needed ]
Depending on the type of interrogation, the transponder sends back a transponder code (or "squawk code", Mode A) or altitude information (Mode C) to help air traffic controllers to identify the aircraft and to maintain separation between planes. Another mode called Mode S (Mode Select) is designed to help avoiding over-interrogation of the transponder (having many radars in busy areas) and to allow automatic collision avoidance. Mode S transponders are backward compatible with Modes A and C. Mode S is mandatory in controlled airspace in many countries. Some countries have also required, or are moving toward requiring, that all aircraft be equipped with Mode S, even in uncontrolled airspace. However, in the field of general aviation there have been objections to these moves, because of the cost, size, limited benefit to the users in uncontrolled airspace, and, in the case of balloons and gliders, the power requirements during long flights.[ citation needed ]
Transponders are used on some military aircraft to ensure ground personnel can verify the functionality of a missile’s flight termination system prior to launch. Such radar-enhancing transponders are needed as the enclosed weapon bays on modern aircraft interfere with prelaunch, flight termination system verification performed by range safety personnel during training test launches. The transponders re-radiate the signals allowing for much longer communication distances. [8]
The International Maritime Organization's International Convention for the Safety of Life at Sea (SOLAS) requires the Automatic Identification System (AIS) to be fitted aboard international voyaging ships with 300 or more gross tonnage (GT), and all passenger ships regardless of size. [9] AIS transmitters/receivers are generally called transponders, but they generally transmit autonomously, although coast stations can interrogate class B transponders on smaller vessels for additional information.[ citation needed ] In addition, navigational aids often have transponders called RACON (radar beacons) designed to make them stand out on a ship's radar screen.[ citation needed ]
Sonar transponders operate under water and are used to measure distance and form the basis of underwater location marking, position tracking and navigation.
Electronic toll collection systems such as E-ZPass in the eastern United States use RFID transponders to identify vehicles.[ citation needed ]
Transponders are used in races for lap timing. A cable loop is dug into the race circuit near to the start/finish line. Each individual runner or car has an active transponder with a unique ID code. When the individual passes the start/finish line, the lap time and the racing position is shown on the score board.[ citation needed ]
Passive and active RFID systems are used in motor sports, and off-road events such as Enduro and Hare and Hounds racing, the riders have a transponder on their person, normally on their arm. When they complete a lap they swipe or touch the receiver which is connected to a computer and log their lap time.[ citation needed ]
NASCAR uses transponders and cable loops placed at numerous points around the track to determine the lineup during a caution period. This system replaced a dangerous race back to the start-finish line.[ citation needed ]
Many modern automobiles have keys with transponders hidden inside the plastic head of the key. The user of the car may not even be aware that the transponder is there, because there are no buttons to press. When a key is inserted into the ignition lock cylinder and turned, the car's computer sends a signal to the transponder. Unless the transponder replies with a valid code, the computer will not allow the engine to be started. Transponder keys have no battery; they are energized by the signal itself. [10] [11]
Transponders may also be used by residents to enter their gated communities.[ citation needed ] However, having more than one transponder causes problems. If a resident's car with simple transponder is parked in the vicinity, any vehicle can come up to the automated gate, triggering the gate interrogation signal, which may get an acceptable response from the resident's car. Such units properly installed might involve beamforming, unique transponders for each vehicle, or simply obliging vehicles to be stored away from the gate.[ citation needed ]
In radio communication, a transceiver is an electronic device which is a combination of a radio transmitter and a receiver, hence the name. It can both transmit and receive radio waves using an antenna, for communication purposes. These two related functions are often combined in a single device to reduce manufacturing costs. The term is also used for other devices which can both transmit and receive through a communications channel, such as optical transceivers which transmit and receive light in optical fiber systems, and bus transceivers which transmit and receive digital data in computer data buses.
In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber as well as multiplication of capacity.
Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination.
Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder called a tag, a radio receiver, and a transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.
Identification, friend or foe (IFF) is a combat identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.
In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.
The automatic identification system (AIS) is an automatic tracking system that uses transceivers on ships and is used by vessel traffic services (VTS). When satellites are used to receive AIS signatures, the term Satellite-AIS (S-AIS) is used. AIS information supplements marine radar, which continues to be the primary method of collision avoidance for water transport. Although technically and operationally distinct, the ADS-B system is analogous to AIS and performs a similar function for aircraft.
Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, relies on targets equipped with a radar transponder, that reply to each interrogation signal by transmitting encoded data such as an identity code, the aircraft's altitude and further information depending on its chosen mode. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II; therefore, the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.
The air traffic control radar beacon system (ATCRBS) is a system used in air traffic control (ATC) to enhance surveillance radar monitoring and separation of air traffic. It consists of a rotating ground antenna and transponders in aircraft. The ground antenna sweeps a narrow vertical beam of microwaves around the airspace. When the beam strikes an aircraft, the transponder transmits a return signal back giving information such as altitude and the Squawk Code, a four digit code assigned to each aircraft that enters a region. Information about this aircraft is then entered into the system and subsequently added to the controller's screen to display this information when queried. This information can include flight number designation and altitude of the aircraft. ATCRBS assists air traffic control (ATC) surveillance radars by acquiring information about the aircraft being monitored, and providing this information to the radar controllers. The controllers can use the information to identify radar returns from aircraft and to distinguish those returns from ground clutter.
An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.
The Rebecca/Eureka transponding radar was a short-range radio navigation system used for the dropping of airborne forces and their supplies. It consisted of two parts, the Rebecca airborne transceiver and antenna system, and the Eureka ground-based transponder. Rebecca calculated the range to the Eureka based on the timing of the return signals, and its relative position using a highly directional antenna. The 'Rebecca' name comes from the phrase "Recognition of beacons". The 'Eureka' name comes from the Greek word meaning "I have found it!".
A transponder is an electronic device that produces a response when it receives a radio-frequency interrogation. Aircraft have transponders to assist in identifying them on air traffic control radar. Collision avoidance systems have been developed to use transponder transmissions as a means of detecting aircraft at risk of colliding with each other.
A portable collision avoidance system (PCAS) is an aircraft collision avoidance system similar in function to traffic collision avoidance system (TCAS). TCAS is the industry standard for commercial collision avoidance systems but PCAS is gaining recognition as an effective means of collision avoidance for general aviation and is in use the world over by independent pilots in personally owned or rented light aircraft as well as by flight schools and flying clubs. Its main competitor is FLARM.
A communications satellite's transponder is the series of interconnected units that form a communications channel between the receiving and the transmitting antennas. It is mainly used in satellite communication to transfer the received signals.
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates oscillating electrical energy, often characterized as a wave. They can be received by other antennas connected to a radio receiver, this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.
Automatic Dependent Surveillance–Broadcast (ADS-B) is an aviation surveillance technology and form of electronic conspicuity in which an aircraft determines its position via satellite navigation or other sensors and periodically broadcasts its position and other related data, enabling it to be tracked. The information can be received by air traffic control ground-based or satellite-based receivers as a replacement for secondary surveillance radar (SSR). Unlike SSR, ADS-B does not require an interrogation signal from the ground or from other aircraft to activate its transmissions. ADS-B can also receive point-to-point by other nearby equipped "ADS-B In" equipped aircraft to provide traffic situational awareness and support self-separation. ADS-B is "automatic" in that it requires no pilot or external input to trigger its transmissions. It is "dependent" in that it depends on data from the aircraft's navigation system to provide the transmitted data.
ISO/IEC 18000-3 is an international standard for passive RFID item level identification and describes the parameters for air interface communications at 13.56 MHz. The target markets for MODE 2 are in tagging systems for manufacturing, logistics, retail, transport and airline baggage. MODE 2 is especially suitable for high speed bulk conveyor fed applications.
The Unified S-band (USB) system is a tracking and communication system developed for the Apollo program by NASA and the Jet Propulsion Laboratory (JPL). It operated in the S band portion of the microwave spectrum, unifying voice communications, television, telemetry, command, tracking and ranging into a single system to save size and weight and simplify operations. The USB ground network was managed by the Goddard Space Flight Center (GSFC). Commercial contractors included Collins Radio, Blaw-Knox, Motorola and Energy Systems.
IFF Mark X was the NATO standard military identification friend or foe transponder system from the early 1950s until it was slowly replaced by the IFF Mark XII in the 1970s. It was also adopted by ICAO, with some modifications, as the civilian air traffic control (ATC) secondary radar (SSR) transponder. The X in the name does not mean "tenth", but "eXperimental". Later IFF models acted as if it was the tenth in the series and used subsequent numbers.
An emergency locator beacon is a radio beacon, a portable battery powered radio transmitter, used to locate airplanes, vessels, and persons in distress and in need of immediate rescue. Various types of emergency locator beacons are carried by aircraft, ships, vehicles, hikers and cross-country skiers. In case of an emergency, such as the aircraft crashing, the ship sinking, or a hiker becoming lost, the transmitter is deployed and begins to transmit a continuous radio signal, which is used by search and rescue teams to quickly find the emergency and render aid. The purpose of all emergency locator beacons is to help rescuers find survivors within the so-called "golden day", the first 24 hours following a traumatic event, during which the majority of survivors can usually be saved.