Transponder (satellite communications)

Last updated

A communications satellite's transponder is the series of interconnected units that form a communications channel between the receiving and the transmitting antennas. [1]

It is mainly used in satellite communication to transfer the received signals.

A transponder is typically composed of:

Most communication satellites are radio relay stations in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz. Most transponders operate on a bent pipe (i.e., u-bend) principle, sending back to Earth what goes into the conduit with only amplification and a shift from uplink to downlink frequency. However, some modern satellites use on-board processing, where the signal is demodulated, decoded, re-encoded and modulated aboard the satellite. This type, called a "regenerative" transponder, is more complex, but has many advantages, such as improving the signal to noise ratio as the signal is regenerated from the digital domain, and also permits selective processing of the data in the digital domain.

With data compression and multiplexing, several video (including digital video) and audio channels may travel through a single transponder on a single wideband carrier.

Original analog video only had one channel per transponder, with subcarriers for audio and automatic transmission-identification service ATIS. Non-multiplexed radio stations can also travel in single channel per carrier (SCPC) mode, with multiple carriers (analog or digital) per transponder. This allows each station to transmit directly to the satellite, rather than paying for a whole transponder or using landlines to send it to an Earth station for multiplexing with other stations.

NASA distinguishes between a "transceiver" and "transponder". A transceiver has an independent transmitter and receiver packaged in the same unit. In a transponder the transmit carrier frequency is derived from the received signal. The frequency linkage allows an interrogating ground station to recover the Doppler shift and thus infer range and speed from a communication signal without allocating power to a separate ranging signal. [2]

Transponder equivalent

A transponder equivalent (TPE) is a normalized way to refer to transponder bandwidth. It simply means how many transponders would be used if the same total bandwidths used only 36 MHz transponders. [3] [4] [5] So, for example, the ARSAT-1 has 24 IEEE Ku band transponders: 12 with a bandwidth of 36 MHz, 8 with 54 MHz, and 4 with 72 MHz, which totals to 1152  MHz, or 32 TPE (i.e., 1152 MHz divided by 36 MHz). [6] [7]

Related Research Articles

<span class="mw-page-title-main">Multiplexing</span> Method of combining multiple signals into one signal over a shared medium

In telecommunications and computer networking, multiplexing is a method by which multiple analog or digital signals are combined into one signal over a shared medium. The aim is to share a scarce resource – a physical transmission medium. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy in the 1870s, and is now widely applied in communications. In telephony, George Owen Squier is credited with the development of telephone carrier multiplexing in 1910.

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Transponder</span> Device that emits an identifying signal in response to a received signal

In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber, also called wavelength-division duplexing, as well as multiplication of capacity.

<span class="mw-page-title-main">Intermediate frequency</span> Frequency to which a carrier wave is shifted during transmission or reception

In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

<span class="mw-page-title-main">Frequency-division multiplexing</span> Signal processing technique in telecommunications

In telecommunications, frequency-division multiplexing (FDM) is a technique by which the total bandwidth available in a communication medium is divided into a series of non-overlapping frequency bands, each of which is used to carry a separate signal. This allows a single transmission medium such as a microwave radio link, cable or optical fiber to be shared by multiple independent signals. Another use is to carry separate serial bits or segments of a higher rate signal in parallel.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Frequency-division multiple access (FDMA) is a channel access method used in some multiple-access protocols. FDMA allows multiple users to send data through a single communication channel, such as a coaxial cable or microwave beam, by dividing the bandwidth of the channel into separate non-overlapping frequency sub-channels and allocating each sub-channel to a separate user. Users can send data through a subchannel by modulating it on a carrier wave at the subchannel's frequency. It is used in satellite communication systems and telephone trunklines.

A subcarrier is a sideband of a radio frequency carrier wave, which is modulated to send additional information. Examples include the provision of colour in a black and white television system or the provision of stereo in a monophonic radio broadcast. There is no physical difference between a carrier and a subcarrier; the "sub" implies that it has been derived from a carrier, which has been amplitude modulated by a steady signal and has a constant frequency relation to it.

<span class="mw-page-title-main">Cable television headend</span> Facility for cable television system

A cable television headend is a master facility for receiving television signals for processing and distribution over a cable television system. A headend facility may be staffed or unstaffed and is typically surrounded by some type of security fencing. The building is typically sturdy and purpose-built to provide security, cooling, and easy access for the electronic equipment used to receive and re-transmit video over the local cable infrastructure. One can also find head ends in power-line communication (PLC) substations and Internet communications networks.

<span class="mw-page-title-main">Radio receiver</span> Device for receiving radio broadcasts

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

Single channel per carrier (SCPC) refers to using a single signal at a given frequency and bandwidth. Most often, this is used on broadcast satellites to indicate that radio stations are not multiplexed as subcarriers onto a single video carrier, but instead independently share a transponder. It may also be used on other communications satellites, or occasionally on non-satellite transmissions.

A television transmitter is a transmitter that is used for terrestrial (over-the-air) television broadcasting. It is an electronic device that radiates radio waves that carry a video signal representing moving images, along with a synchronized audio channel, which is received by television receivers belonging to a public audience, which display the image on a screen. A television transmitter, together with the broadcast studio which originates the content, is called a television station. Television transmitters must be licensed by governments, and are restricted to a certain frequency channel and power level. They transmit on frequency channels in the VHF and UHF bands. Since radio waves of these frequencies travel by line of sight, they are limited by the horizon to reception distances of 40–60 miles depending on the height of transmitter station.

<span class="mw-page-title-main">Amateur radio repeater</span> Combined receiver and transmitter

An amateur radio repeater is an electronic device that receives a weak or low-level amateur radio signal and retransmits it at a higher level or higher power, so that the signal can cover longer distances without degradation. Many repeaters are located on hilltops or on tall buildings as the higher location increases their coverage area, sometimes referred to as the radio horizon, or "footprint". Amateur radio repeaters are similar in concept to those used by public safety entities, businesses, government, military, and more. Amateur radio repeaters may even use commercially packaged repeater systems that have been adjusted to operate within amateur radio frequency bands, but more often amateur repeaters are assembled from receivers, transmitters, controllers, power supplies, antennas, and other components, from various sources.

<span class="mw-page-title-main">Radio repeater</span>

A radio repeater is a combination of a radio receiver and a radio transmitter that receives a signal and retransmits it, so that two-way radio signals can cover longer distances. A repeater sited at a high elevation can allow two mobile stations, otherwise out of line-of-sight propagation range of each other, to communicate. Repeaters are found in professional, commercial, and government mobile radio systems and also in amateur radio.

<span class="mw-page-title-main">Satellite television</span> Broadcasting of television using artificial satellites

Satellite television is a service that delivers television programming to viewers by relaying it from a communications satellite orbiting the Earth directly to the viewer's location. The signals are received via an outdoor parabolic antenna commonly referred to as a satellite dish and a low-noise block downconverter.

<span class="mw-page-title-main">Radio</span> Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

<span class="mw-page-title-main">Unified S-band</span> Tracking and communication system developed by NASA and JPL

The Unified S-band (USB) system is a tracking and communication system developed for the Apollo program by NASA and the Jet Propulsion Laboratory (JPL). It operated in the S band portion of the microwave spectrum, unifying voice communications, television, telemetry, command, tracking and ranging into a single system to save size and weight and simplify operations. The USB ground network was managed by the Goddard Space Flight Center (GSFC). Commercial contractors included Collins Radio, Blaw-Knox, Motorola and Energy Systems.

Satellite subcarrier audio is audio transmitted by way of satellite that uses a separate analog or digital signal carried on a main radio transmission on a specific satellite transponder. More technically, it is an already-modulated signal, which is then modulated into another signal of higher frequency and bandwidth. In a more general sense, satellite subcarrier audio is an early form of satellite radio not intended for the consumer market but was initially unencrypted, thus receivable to satellite hobbyists.

References

  1. Roddi, Dennis (2001). Satellite Communications (3rd ed.). New York: McGraw Hill. p. 587. ISBN   0-07-138285-2.
  2. Space Network Users Guide Archived 2016-03-05 at the Wayback Machine .
  3. "Commercial Geostationary Satellite Transponder Markets for Latin America". Frost & Sullivan Research Service. 2003-07-03. Retrieved 2015-08-31.
  4. Jacbo Gullish, Futron (February 2011). "The North American Satellite Market New Methodology Required..." www.satmagazine.com. SatMagazine. Retrieved 2015-08-31.
  5. "Transponder". JSat International. Retrieved 2015-08-31.
  6. "ARSAT-1 Telecommunication Satellite, Argentina". Aerospace Technology. Retrieved 2015-08-31.
  7. Belluscio, Alejandro G. (2014-10-06). "ArSat-1: Argentina to communicate its heightened space ambitions". NASA SpaceFlight. Retrieved 2015-08-25.