Identification friend or foe

Last updated
An IFF test set used by a United States Air Force avionics technician technical sergeant for testing transponders on aircraft in 2001. IFF camera.jpeg
An IFF test set used by a United States Air Force avionics technician technical sergeant for testing transponders on aircraft in 2001.
Model XAE IFF kit, the first radio recognition IFF system in the U.S. Model XAE IFF.jpg
Model XAE IFF kit, the first radio recognition IFF system in the U.S.

Identification, friend or foe (IFF) is a combat identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used. [1] It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.

Contents

IFF can only positively identify friendly aircraft or other forces. [2] [3] [4] [5] If an IFF interrogation receives no reply or an invalid reply, the object is not positively identified as foe; friendly forces may not properly reply to IFF for various reasons such as equipment malfunction, and parties in the area not involved in the combat, such as civilian airliners, will not be equipped with IFF.

IFF is a tool within the broader military action of combat identification (CID), the characterization of objects detected in the field of combat sufficiently accurately to support operational decisions. The broadest characterization is that of friend, enemy, neutral, or unknown. CID not only can reduce friendly fire incidents, but also contributes to overall tactical decision-making. [6]

With the successful deployment of radar systems for air defence during World War II, combatants were immediately confronted with the difficulty of distinguishing friendly aircraft from hostile ones; by that time, aircraft were flown at high speed and altitude, making visual identification impossible, and the targets showed up as featureless blips on the radar screen. This led to incidents such as the Battle of Barking Creek, over Britain, [7] [8] [9] and the air attack on the fortress of Koepenick over Germany. [10] [11]

British development

Early concepts

Radar coverage of the Chain Home system, 1939-40 Chain home coverage.jpg
Radar coverage of the Chain Home system, 1939–40

Already before the deployment of their Chain Home radar system (CH), the RAF had considered the problem of IFF. Robert Watson-Watt had filed patents on such systems in 1935 and 1936. By 1938, researchers at Bawdsey Manor began experiments with "reflectors" consisting of dipole antennas tuned to resonate to the primary frequency of the CH radars. When a pulse from the CH transmitter hit the aircraft, the antennas would resonate for a short time, increasing the amount of energy returned to the CH receiver. The antenna was connected to a motorized switch that periodically shorted it out, preventing it from producing a signal. This caused the return on the CH set to periodically lengthen and shorten as the antenna was turned on and off. In practice, the system was found to be too unreliable to use; the return was highly dependent on the direction the aircraft was moving relative to the CH station, and often returned little or no additional signal. [12]

It had been suspected this system would be of little use in practice. When that turned out to be the case, the RAF turned to an entirely different system that was also being planned. This consisted of a set of tracking stations using HF/DF radio direction finders. Their aircraft radios were modified to send out a 1 kHz tone for 14 seconds every minute, allowing the stations ample time to measure the aircraft's bearing. Several such stations were assigned to each "sector" of the air defence system, and sent their measurements to a plotting station at sector headquarters, who used triangulation to determine the aircraft's location. Known as "pip-squeak", the system worked, but was labour-intensive and did not display its information directly to the radar operators. A system that worked directly with the radar was clearly desirable. [13]

IFF Mark II

The first active IFF transponder (transmitter/responder) was the IFF Mark I which was used experimentally in 1939. This used a regenerative receiver, which fed a small amount of the amplified output back into the input, strongly amplifying even small signals as long as they were of a single frequency (like Morse code, but unlike voice transmissions). They were tuned to the signal from the CH radar (20–30 MHz), amplifying it so strongly that it was broadcast back out the aircraft's antenna. Since the signal was received at the same time as the original reflection of the CH signal, the result was a lengthened "blip" on the CH display which was easily identifiable. In testing, it was found that the unit would often overpower the radar or produce too little signal to be seen, and at the same time, new radars were being introduced using new frequencies.

Instead of putting Mark I into production, a new IFF Mark II was introduced in early 1940. Mark II had a series of separate tuners inside tuned to different radar bands that it stepped through using a motorized switch, while an automatic gain control solved the problem of it sending out too much signal. Mark II was technically complete as the war began, but a lack of sets meant it was not available in quantity and only a small number of RAF aircraft carried it by the time of the Battle of Britain. Pip-squeak was kept in operation during this period, but as the Battle ended, IFF Mark II was quickly put into full operation. Pip-squeak was still used for areas over land where CH did not cover, as well as an emergency guidance system. [14]

IFF Mark III

Even by 1940 the complex system of Mark II was reaching its limits while new radars were being constantly introduced. By 1941, a number of sub-models were introduced that covered different combinations of radars, common naval ones for instance, or those used by the RAF. But the introduction of radars based on the microwave-frequency cavity magnetron rendered this obsolete; there was simply no way to make a responder operating in this band using contemporary electronics.

In 1940, English engineer Freddie Williams had suggested using a single separate frequency for all IFF signals, but at the time there seemed no pressing need to change the existing system. With the introduction of the magnetron, work on this concept began at the Telecommunications Research Establishment as the IFF Mark III. This was to become the standard for the Western Allies for most of the war.

Mark III transponders were designed to respond to specific 'interrogators', rather than replying directly to received radar signals. These interrogators worked on a limited selection of frequencies, no matter what radar they were paired with. The system also allowed limited communication to be made, including the ability to transmit a coded 'Mayday' response. The IFF sets were designed and built by Ferranti in Manchester to Williams' specifications. Equivalent sets were manufactured in the US, initially as copies of British sets, so that allied aircraft would be identified upon interrogation by each other's radar. [14]

IFF sets were obviously highly classified. Thus, many of them were wired with explosives in the event the aircrew bailed out or crash landed. Jerry Proc reports:

Alongside the switch to turn on the unit was the IFF destruct switch to prevent its capture by the enemy. Many a pilot chose the wrong switch and blew up his IFF unit. The thud of a contained explosion and the acrid smell of burning insulation in the cockpit did not deter many pilots from destroying IFF units time and time again. Eventually, the self destruct switch was secured by a thin wire to prevent its accidental use." [15]

Germany

Code generator from German WW II IFF-Radio FuG 25a Erstling Erstling-geber.jpg
Code generator from German WW II IFF-Radio FuG 25a Erstling

FuG 25a Erstling (English: Firstborn, Debut) was developed in Germany in 1940. It was tuned to the low-VHF band at 125 MHz used by the Freya radar, and an adaptor was used with the low-UHF-banded 550–580 MHz used by Würzburg. Before a flight, the transceiver was set up with a selected day code of ten bits which was dialed into the unit. To start the identification procedure, the ground operator switched the pulse frequency of his radar from 3,750 Hz to 5,000 Hz. The airborne receiver decoded that and started to transmit the day code. The radar operator would then see the blip lengthen and shorten in the given code. The IFF transmitter worked on 168 MHz with a power of 400 watts (PEP).

The system included a way for ground controllers to determine whether an aircraft had the right code or not but it did not include a way for the transponder to reject signals from other sources. British military scientists found a way of exploiting this by building their own IFF transmitter called Perfectos, which were designed to trigger a response from any FuG 25a system in the vicinity. When an FuG 25a responded on its 168 MHz frequency, the signal was received by the antenna system from an AI Mk. IV radar, which originally operated at 212 MHz. By comparing the strength of the signal on different antennas the direction to the target could be determined. Mounted on Mosquitos, the "Perfectos" severely limited German use of the FuG 25a.

Further wartime developments

IFF Mark IV and V

The United States Naval Research Laboratory had been working on their own IFF system since before the war. It used a single interrogation frequency, like the Mark III, but differed in that it used a separate responder frequency. Responding on a different frequency has several practical advantages, most notably that the response from one IFF cannot trigger another IFF on another aircraft. But it requires a complete transmitter for the responder side of the circuitry, in contrast to the greatly simplified regenerative system used in the British designs. This technique is now known as a cross-band transponder.

When the Mark II was revealed in 1941 during the Tizard Mission, it was decided to use it and take the time to further improve their experimental system. The result was what became IFF Mark IV. The main difference between this and earlier models is that it worked on higher frequencies, around 600 MHz, which allowed much smaller antennas. However, this also turned out to be close to the frequencies used by the German Würzburg radar and there were concerns that it would be triggered by that radar and the transponder responses would be picked on its radar display. This would immediately reveal the IFF's operational frequencies.

This led to a US–British effort to make a further improved model, the Mark V, also known as the United Nations Beacon or UNB. This moved to still higher frequencies around 1 GHz but operational testing was not complete when the war ended. By the time testing was finished in 1948, the much improved Mark X was beginning its testing and Mark V was abandoned.

Postwar systems

IFF Mark X

Mark X started as a purely experimental device operating at frequencies above 1 GHz; the name refers to "experimental", not "number 10". As development continued it was decided to introduce an encoding system known as the "Selective Identification Feature", or SIF. SIF allowed the return signal to contain up to 12 pulses, representing four octal digits of 3 bits each. Depending on the timing of the interrogation signal, SIF would respond in several ways. Mode 1 indicated the type of aircraft or its mission (cargo or bomber, for instance) while Mode 2 returned a tail code.

Mark X began to be introduced in the early 1950s. This was during a period of great expansion of the civilian air transport system, and it was decided to use slightly modified Mark X sets for these aircraft as well. These sets included a new military Mode 3 which was essentially identical to Mode 2, returning a four-digit code, but used a different interrogation pulse, allowing the aircraft to identify if the query was from a military or civilian radar. For civilian aircraft, this same system was known as Mode A, and because they were identical, they are generally known as Mode 3/A.

Several new modes were also introduced during this process. Civilian modes B and D were defined, but never used. Mode C responded with a 12-bit number encoded using Gillham code, which represented the altitude as (that number) x 100 feet - 1200. Radar systems can easily locate an aircraft in two dimensions, but measuring altitude is a more complex problem and, especially in the 1950s, added significantly to the cost of the radar system. By placing this function on the IFF, the same information could be returned for little additional cost, essentially that of adding a digitizer to the aircraft's altimeter.

Modern interrogators generally send out a series of challenges on Mode 3/A and then Mode C, allowing the system to combine the identity of the aircraft with its altitude and location from the radar.

IFF Mark XII

The current IFF system is the Mark XII. This works on the same frequencies as Mark X, and supports all of its military and civilian modes.[ citation needed ]

It had long been considered a problem that the IFF responses could be triggered by any properly formed interrogation, and those signals were simply two short pulses of a single frequency. This allowed enemy transmitters to trigger the response, and using triangulation, an enemy could determine the location of the transponder. The British had already used this technique against the Germans during WWII, and it was used by the USAF against VPAF aircraft during the Vietnam War.

Mark XII differs from Mark X through the addition of the new military Mode 4. This works in a fashion similar to Mode 3/A, with the interrogator sending out a signal that the IFF responds to. There are two key differences, however.

One is that the interrogation pulse is followed by a 12-bit code similar to the ones sent back by the Mark 3 transponders. The encoded number changes day-to-day. When the number is received and decoded in the aircraft transponder, a further cryptographic encoding is applied. If the result of that operation matches the value dialled into the IFF in the aircraft, the transponder replies with a Mode 3 response as before. If the values do not match, it does not respond.

This solves the problem of the aircraft transponder replying to false interrogations, but does not completely solve the problem of locating the aircraft through triangulation. To solve this problem, a delay is added to the response signal that varies based on the code sent from the interrogator. When received by an enemy that does not see the interrogation pulse, which is generally the case as they are often below the radar horizon, this causes a random displacement of the return signal with every pulse. Locating the aircraft within the set of returns is a difficult process.

Mode S

During the 1980s, a new civilian mode, Mode S, was added that allowed greatly increased amounts of data to be encoded in the returned signal. This was used to encode the location of the aircraft from the navigation system. This is a basic part of the traffic collision avoidance system (TCAS), which allows commercial aircraft to know the location of other aircraft in the area and avoid them without the need for ground operators.

The basic concepts from Mode S were then militarized as Mode 5, which is simply a cryptographically encoded version of the Mode S data.

The IFF of World War II and Soviet military systems (1946 to 1991) used coded radar signals (called cross-band interrogation, or CBI) to automatically trigger the aircraft's transponder in an aircraft illuminated by the radar. Radar-based aircraft identification is also called secondary surveillance radar in both military and civil usage, with primary radar bouncing an RF pulse off of the aircraft to determine position. George Charrier, working for RCA, filed for a patent for such an IFF device in 1941. It required the operator to perform several adjustments to the radar receiver to suppress the image of the natural echo on the radar receiver, so that visual examination of the IFF signal would be possible. [16]

By 1943, Donald Barchok filed a patent for a radar system using the abbreviation IFF in his text with only parenthetic explanation, indicating that this acronym had become an accepted term. [17] In 1945, Emile Labin and Edwin Turner filed patents for radar IFF systems where the outgoing radar signal and the transponder's reply signal could each be independently programmed with a binary codes by setting arrays of toggle switches; this allowed the IFF code to be varied from day to day or even hour to hour. [18] [19]

Early 21st century systems

The United States and other NATO countries started using a system called Mark XII in the late twentieth century; Britain had not until then implemented an IFF system compatible with that standard, but then developed a program for a compatible system known as successor IFF (SIFF). [20]

Modes

Modes 4 and 5 are designated for use by NATO forces.

Submarines

In World War I, eight submarines were sunk by friendly fire and in World War II nearly twenty were sunk this way. [23] Still, Identification of friend or foe (IFF) has not been regarded a high concern before the 1990s by the US military as not many other countries possess submarines.[ dubious discuss ] [24]

IFF methods that are analogous to aircraft IFF have been deemed unfeasible for submarines because they would make submarines easier to detect. Thus, having friendly submarines broadcast a signal, or somehow increase the submarine's signature (based on acoustics, magnetic fluctuations etc.), are not considered viable. [24] Instead, submarine IFF is done based on carefully defining areas of operation. Each friendly submarine is assigned a patrol area, where the presence of any other submarine is deemed hostile and open to attack. Further, within these assigned areas, surface ships and aircraft refrain from any anti-submarine warfare (ASW); only the resident submarine may target other submarines in its own area. Ships and aircraft may still engage in ASW in areas that have not been assigned to any friendly submarines. [24] Navies also use database of acoustic signatures to attempt to identify the submarine, but acoustic data can be ambiguous and several countries deploy similar classes of submarines. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Transponder</span> Device that emits an identifying signal in response to a received signal

In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder.

<span class="mw-page-title-main">Radio navigation</span> Use of radio-frequency electromagnetic waves to determine position on the Earths surface

Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination.

<span class="mw-page-title-main">Distance measuring equipment</span> Radio navigation technology used in aviation

In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.

<span class="mw-page-title-main">Tactical air navigation system</span> Military navigation system

A tactical air navigation system, commonly referred to by the acronym TACAN, is a navigation system initially designed for naval aircraft to acquire moving landing platforms and later expanded for use by other military aircraft. It provides the user with bearing and distance to a ground or ship-borne station. It is from an end-user perspective a more accurate version of the VOR/DME system that provides bearing and range information for civil aviation. The DME portion of the TACAN system is available for civil use; at VORTAC facilities where a VOR is combined with a TACAN, civil aircraft can receive VOR/DME readings. Aircraft equipped with TACAN avionics can use this system for enroute navigation as well as non-precision approaches to landing fields.

<span class="mw-page-title-main">AN/MPQ-64 Sentinel</span> American short-range air defense radar

The AN/MPQ-64 Sentinel is an X-band electronically steered pulse-Doppler 3D radar system used to alert and cue Short Range Air Defense (SHORAD) weapons to the locations of hostile targets approaching their front line forces. It is currently produced by Raytheon Missiles & Defense.

<span class="mw-page-title-main">Secondary surveillance radar</span> Radar system used in air traffic control

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, relies on targets equipped with a radar transponder, that reply to each interrogation signal by transmitting encoded data such as an identity code, the aircraft's altitude and further information depending on its chosen mode. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II; therefore, the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.

The air traffic control radar beacon system (ATCRBS) is a system used in air traffic control (ATC) to enhance surveillance radar monitoring and separation of air traffic. It consists of a rotating ground antenna and transponders in aircraft. The ground antenna sweeps a narrow vertical beam of microwaves around the airspace. When the beam strikes an aircraft, the transponder transmits a return signal back giving information such as altitude and the Squawk Code, a four digit code assigned to each aircraft that enters a region. Information about this aircraft is then entered into the system and subsequently added to the controller's screen to display this information when queried. This information can include flight number designation and altitude of the aircraft. ATCRBS assists air traffic control (ATC) surveillance radars by acquiring information about the aircraft being monitored, and providing this information to the radar controllers. The controllers can use the information to identify radar returns from aircraft and to distinguish those returns from ground clutter.

<span class="mw-page-title-main">Airport surveillance radar</span> Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

<span class="mw-page-title-main">Rebecca/Eureka transponding radar</span> World War II airborne radio transponder system

The Rebecca/Eureka transponding radar was a short-range radio navigation system used for the dropping of airborne forces and their supplies. It consisted of two parts, the Rebecca airborne transceiver and antenna system, and the Eureka ground-based transponder. Rebecca calculated the range to the Eureka based on the timing of the return signals, and its relative position using a highly directional antenna. The 'Rebecca' name comes from the phrase "Recognition of beacons". The 'Eureka' name comes from the Greek word meaning "I have found it!".

<span class="mw-page-title-main">Transponder (aeronautics)</span> Airborne radio transponder

A transponder is an electronic device that produces a response when it receives a radio-frequency interrogation. Aircraft have transponders to assist in identifying them on air traffic control radar. Collision avoidance systems have been developed to use transponder transmissions as a means of detecting aircraft at risk of colliding with each other.

A portable collision avoidance system (PCAS) is a proprietary aircraft collision avoidance system similar in function to traffic collision avoidance system (TCAS). TCAS is the industry standard for commercial collision avoidance systems but PCAS is gaining recognition as an effective means of collision avoidance for general aviation and is in use the world over by independent pilots in personally owned or rented light aircraft as well as by flight schools and flying clubs. PCAS was manufactured by Zaon. Its main competitor is FLARM.

<span class="mw-page-title-main">Multiservice tactical brevity code</span> Brevity code for NATO communications

Multiservice tactical brevity codes are codes used by various military forces. The codes' procedure words, a type of voice procedure, are designed to convey complex information with a few words.

The aviation transponder interrogation modes are the standard formats of pulsed sequences from an interrogating Secondary Surveillance Radar (SSR) or similar Automatic Dependent Surveillance-Broadcast (ADS-B) system. The reply format is usually referred to as a "code" from a transponder, which is used to determine detailed information from a suitably equipped aircraft.

During World War II, the German Luftwaffe relied on an increasingly diverse array of electronic communications, IFF and RDF equipment as avionics in its aircraft and also on the ground. Most of this equipment received the generic prefix FuG for Funkgerät, meaning "radio equipment". Most of the aircraft-mounted Radar equipment also used the FuG prefix. This article is a list and a description of the radio, IFF and RDF equipment.

<span class="mw-page-title-main">FuG 25a Erstling</span> Type of aircraft transponder

FuG 25a Erstling was an identification friend or foe (IFF) transponder installed in Luftwaffe aircraft starting in 1941 in order to allow German Freya radar stations to identify them as friendly. The system was also used as a navigation transponder as part of the EGON night bombing system during 1943 and 1944. It was the second German IFF system to be used, replacing the FuG 25 Zwilling.

Pip-squeak was a radio navigation system used by the British Royal Air Force during the early part of World War II. Pip-squeak used an aircraft's voice radio set to periodically send out a 1 kHz tone which was picked up by ground-based high-frequency direction finding receivers. Using three HFDF measurements, observers could determine the location of friendly aircraft using triangulation.

<span class="mw-page-title-main">IFF Mark II</span> Aircraft identification system

IFF Mark II was the first operational identification friend or foe system. It was developed by the Royal Air Force just before the start of World War II. After a short run of prototype Mark Is, used experimentally in 1939, the Mark II began widespread deployment at the end of the Battle of Britain in late 1940. It remained in use until 1943, when it began to be replaced by the standardised IFF Mark III, which was used by all Allied aircraft until long after the war ended.

<span class="mw-page-title-main">IFF Mark III</span> Aircraft identification friend or foe system

IFF Mark III, also known as ARI.5025 in the UK or SCR.595 in the US, was the Allied Forces standard identification friend or foe (IFF) system from 1943 until well after the end of World War II. It was widely used by aircraft, ships, and submarines, as well as in various adaptations for secondary purposes like search and rescue. 500 units were also supplied to the Soviet Union during the war.

IFF Mark X was the NATO standard military identification friend or foe transponder system from the early 1950s until it was slowly replaced by the IFF Mark XII in the 1970s. It was also adopted by ICAO, with some modifications, as the civilian air traffic control (ATC) secondary radar (SSR) transponder. The X in the name does not mean "tenth", but "eXperimental". Later IFF models acted as if it was the tenth in the series and used subsequent numbers.

<span class="mw-page-title-main">RX12874</span> Military radar detector

RX12874, also known as the Passive Detection System (PDS) and by its nickname "Winkle", was a radar detector system used as part of the Royal Air Force's Linesman/Mediator radar network until the early 1980s. Winkle passed out of service along with the rest of the Linesman system as the IUKADGE network replaced it.

References

  1. "Identification Friend or Foe (IFF) Panel with Dynamic Contrast at Long Wave Infrared (LWIR) Wavelengths (Solicitation)". SBIR-STTR. US Department of Defense (Army). January 2019. Archived from the original on 2021-08-22. Retrieved 2021-08-22.
  2. "Combat Identification IFF Systems" (PDF). Tellumat. Archived from the original (PDF) on 24 January 2022. Retrieved 24 September 2020.
  3. "MEADS System Gains Full Certification for Identifying Friend or Foe Aircraft". Lockheed Martin. Archived from the original on 2016-03-04. Retrieved 31 May 2015.
  4. "Identification Friend or Foe". Global Security. Retrieved 31 May 2015.
  5. "Combat Identification (IFF)". BAE Systems. Retrieved 31 May 2015.
  6. "Joint Publication (JP) 3-09, Joint Fire Support" (PDF). US DoD. 30 June 2010. p. III-20. Archived from the original (PDF) on 2014-04-11. Retrieved 27 December 2013.
  7. Christopher Yeoman & John Freeborn, Tiger Cub – The Story of John Freeborn DFC* A 74 Squadron Fighter Pilot In WWII, Pen and Sword Aviation, 2009, ISBN   978-1-84884-023-2, p45
  8. Bob Cossey, A Tiger's Tale: The Story of Battle of Britain Fighter Ace Wg. Cdr. John Connell Freeborn, ISBN   978-1-900511-64-3, chapter 4
  9. Hough, Richard and Denis Richards. The Battle of Britain: The Greatest Air Battle of World War II, WW Norton, 1990, p.67
  10. Galland, Adolf : The First and the Last p 101(1954 reprinted ..) ISBN   978 80 87888 92 6
  11. Price, Alfred : Battle Over the Reich pp95-6(1973) ISBN   0 7110 0481 1
  12. "General IFF principles". United States Fleet. 1945. Retrieved 2012-12-17.
  13. "The British invention of radar" . Retrieved 2012-12-17.
  14. 1 2 Lord Bowden (1985). "The story of IFF (identification friend or foe)". IEE Proceedings A - Physical Science, Measurement and Instrumentation, Management and Education, Reviews. 132 (6): 435. doi:10.1049/ip-a-1.1985.0079.
  15. Proc, Jerry. "IFF System History". The Web Pages Of Jerry Proc. Jerry Proc. Retrieved 5 November 2018.
  16. George M. Charrier, Recognition System for Pulse Echo Radio Locators, U.S. patent 2,453,970 , granted Nov. 16, 1948.
  17. Donald Barchok, Means for Synchronizing Detection and Interrogation Systems, U.S. patent 2,515,178 , granted July 18, 1950.
  18. Emile Labin, Magnetostrictive Time-Delay Device, U.S. patent 2,495,740 , granted Jan. 31, 1950.
  19. Edwin E. Turner, Coded Impulse Responsive Secret Signalling System, U.S. patent 2,648,060 , granted Aug. 4, 1953.
  20. "Nations Seek NATO-Compatible ID Systems". Archived from the original on 2014-04-08. Retrieved 2012-12-12.
  21. 1 2 3 4 NATO STANAG 4193
  22. "What is IFF (Identification Friend or Foe)?". EverythingRF. Retrieved 29 November 2020.
  23. Charles Kirke, ed. (2012-04-26). Fratricide in Battle. Bloomsbury Publishing.
  24. 1 2 3 "Avoiding Fratricide of Air and Sea Targets" (PDF). Who Goes There: Friend or Foe?. June 1993. pp. 66–67.
  25. Glynn, Michael (2022-05-30). Airborne Anti-Submarine Warfare. p. 245.