Aviation transponder interrogation modes

Last updated

The aviation transponder interrogation modes are the standard formats of pulsed sequences from an interrogating Secondary Surveillance Radar (SSR) or similar Automatic Dependent Surveillance-Broadcast (ADS-B) system. The reply format is usually referred to as a "code" from a transponder, which is used to determine detailed information from a suitably equipped aircraft.

Contents

In its simplest form, a "Mode" or interrogation type is generally determined by pulse spacing between two or more interrogation pulses. Various modes exist from Mode 1 to 5 for military use, to Mode A, B, C and D, and Mode S for civilian use.

Interrogation modes

Several different RF communication protocols have been standardized for aviation transponders:

Military
mode
Civilian
mode
Description
1Provides 2-digit 5-bit mission code (cockpit selectable) [1]
2Provides 4-digit octal unit code (set on ground for fighters, can be changed in flight by transport aircraft) [1]
3AProvides a 4-digit octal identification code for the aircraft, set in the cockpit but assigned by the air traffic controller. Mode 3/A is often combined with Mode C to provide altitude information as well. [2]
CProvides the aircraft's pressure altitude and is usually combined with Mode 3/A to provide a combination of a 4-digit octal code and altitude as Mode 3 A/C, often referred to as Mode A and C [2]
4Provides a 3-pulse reply, delay is based on the encrypted challenge [1]
5Provides a cryptographically secured version of Mode S and ADS-B GPS position [1]
SProvides multiple information formats to a selective interrogation. Each aircraft is assigned a fixed 24-bit address. [2]

Mode A and Mode C are implemented using air traffic control radar beacon system as the physical layer, whereas Mode S is implemented as a standalone backwards-compatible protocol. ADS-B can operate using Mode S-ES or Universal Access Transceiver as its transport layer: [3]

ADS-B
Mode S-ESUAT
Mode AMode CMode S
ATCRBS

Mode A

When the transponder receives an interrogation request, it broadcasts the configured transponder code (or "squawk code"). This is referred to as "Mode 3A" or more commonly, Mode A. A separate type of response called "Ident" can be initiated from the airplane by pressing a button on the transponder control panel.

Mode A with Mode C

A Mode A transponder code response can be augmented by a pressure altitude response, which is then referred to as Mode C operation. [2] Pressure altitude is obtained from an altitude encoder, either a separate self-contained unit mounted in the aircraft or an integral part of the transponder. The altitude information is passed to the transponder using a modified form of the modified Gray code called a Gillham code.

Mode A and C responses are used to help air traffic controllers identify a particular aircraft's position and altitude on a radar screen, in order to maintain separation. [2]

Mode S

Another mode called Mode S (Select) is designed to help avoiding overinterrogation of the transponder (having many radars in busy areas) and to allow automatic collision avoidance. Mode S transponders are compatible with Mode A and Mode C Secondary Surveillance Radar (SSR) systems. [2] This is the type of transponder that is used for TCAS or ACAS II (Airborne Collision Avoidance System) functions, and is required to implement the extended squitter broadcast, one means of participating in ADS-B systems. A TCAS-equipped aircraft must have a Mode S transponder, but not all Mode S transponders include TCAS. Likewise, a Mode S transponder is required to implement 1090ES extended squitter ADS-B Out, but there are other ways to implement ADS-B Out (in the U.S. and China.) The format of Mode S messages is documented in ICAO Doc 9688, Manual on Mode S Specific Services. [4]

Mode S features

Upon interrogation, Mode S transponders transmit information about the aircraft to the SSR system, to TCAS receivers on board aircraft and to the ADS-B SSR system. This information includes the call sign of the aircraft and/or the aircraft's permanent ICAO 24-bit address (which is represented for human interface purposes as six hexadecimal characters.) One of the hidden features of Mode S transponders is that they are backwards compatible; an aircraft equipped with a Mode S transponder can still be used to send replies to Mode A or C interrogations. This feature can be activated by a specific type of interrogation sequence called inter-mode.[ citation needed ]

ICAO 24-bit address

Mode S equipped aircraft are assigned a unique ICAO 24-bit address or (informally) Mode-S "hex code" upon national registration and this address becomes a part of the aircraft's Certificate of Registration. Normally, the address is never changed, however, the transponders are reprogrammable and, occasionally, are moved from one aircraft to another (presumably for operational or cost purposes), either by maintenance or by changing the appropriate entry in the aircraft's Flight management system.

There are 16,777,214 (224-2) unique ICAO 24-bit addresses (hex codes) available. [5] [6] The ICAO 24-bit address can be represented in three digital formats: hexadecimal, octal, and binary. These addresses are used to provide a unique identity normally allocated to an individual aircraft or registration.

As an example, following is the ICAO 24-bit address assigned to the Shuttle Carrier Aircraft with the registration N905NA: [7] [8]

  • Hexadecimal: AC82EC
  • Octal: 53101354
  • Binary: 101011001000001011101100 (Note: occasionally, spaces are added for visual clarity, thus 1010 1100 1000 0010 1110 1100 {Hex big endian} and 001 101 110 100 000 100 110 101 {Octal little endian})
  • Decimal: 11305708

These are all the same 24-bit address of the Shuttle Carrier Aircraft, represented in different numeral systems (see above).

Issues with Mode S transponders

An issue with Mode S transponders arises when pilots enter the wrong flight identity code into the Mode S transponder. [9] In this case, the capabilities of ACAS II and Mode S SSR can be degraded. [10]

Extended squitter

In 2009 the ICAO published an "extended" form of Mode S with more message formats to use with ADS-B; [11] it was further refined in 2012. [12] Countries implementing ADS-B can require the use of either the extended squitter mode of a suitably-equipped Mode S transponder, or the UAT transponder on 978 MHz.

Use in meteorology

Mode-S data has the potential to contain the aircraft's movement vectors vs the Earth and atmosphere. The different between these two vectors is the wind acting on the aircraft. [13] Deriving winds (and temperatures from the Mach number and true airspeed) was developed simultaneously by Siebren de Haan of the KNMI and Edmund Stone of the Met Office. [14] Over the UK the number of aircraft observations has increased from approximately 7500 per day from AMDAR to over 10 million per day. The Met Office, working in partnership with KNMI and FlightRadar24 are actively developing an expanded capability including data from every continent other than Antarctica. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Transponder</span> Device that emits an identifying signal in response to a received signal

In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder.

<span class="mw-page-title-main">Air traffic control</span> Public service provided for the purpose of maintaining the safe and orderly flow of air traffic

Air traffic control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airspace. The primary purpose of ATC worldwide is to prevent collisions, organize and expedite the flow of air traffic, and provide information and other support for pilots.

<span class="mw-page-title-main">Identification friend or foe</span> Command or control enemy distinction through radio frequencies

Identification, friend or foe (IFF) is a combat identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.

<span class="mw-page-title-main">Distance measuring equipment</span> Radio navigation technology used in aviation

In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.

<span class="mw-page-title-main">Traffic collision avoidance system</span> Aircraft collision avoidance system

A traffic alert and collision avoidance system, is an aircraft collision avoidance system designed to reduce the incidence of mid-air collision (MAC) between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of MAC. It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. ACAS/TCAS is based on secondary surveillance radar (SSR) transponder signals, but operates independently of ground-based equipment to provide advice to the pilot on potentially conflicting aircraft.

<span class="mw-page-title-main">Tactical air navigation system</span> Military navigation system

A tactical air navigation system, commonly referred to by the acronym TACAN, is a navigation system used by military aircraft. It provides the user with bearing and distance to a ground or ship-borne station. It is from an end-user perspective a more accurate version of the VOR/DME system that provides bearing and range information for civil aviation. The DME portion of the TACAN system is available for civil use; at VORTAC facilities where a VOR is combined with a TACAN, civil aircraft can receive VOR/DME readings. Aircraft equipped with TACAN avionics can use this system for enroute navigation as well as non-precision approaches to landing fields.

<span class="mw-page-title-main">Secondary surveillance radar</span> Radar system used in air traffic control

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, relies on targets equipped with a radar transponder, that reply to each interrogation signal by transmitting encoded data such as an identity code, the aircraft's altitude and further information depending on its chosen mode. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II; therefore, the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.

The air traffic control radar beacon system (ATCRBS) is a system used in air traffic control (ATC) to enhance surveillance radar monitoring and separation of air traffic. It consists of a rotating ground antenna and transponders in aircraft. The ground antenna sweeps a narrow vertical beam of microwaves around the airspace. When the beam strikes an aircraft, the transponder transmits a return signal back giving information such as altitude and the Squawk Code, a four digit code assigned to each aircraft that enters a region. Information about this aircraft is then entered into the system and subsequently added to the controller's screen to display this information when queried. This information can include flight number designation and altitude of the aircraft. ATCRBS assists air traffic control (ATC) surveillance radars by acquiring information about the aircraft being monitored, and providing this information to the radar controllers. The controllers can use the information to identify radar returns from aircraft and to distinguish those returns from ground clutter.

<span class="mw-page-title-main">Airborne collision avoidance system</span> Avionics system to avoid aircraft collision

An airborne collision avoidance system operates independently of ground-based equipment and air traffic control in warning pilots of the presence of other aircraft that may present a threat of collision. If the risk of collision is imminent, the system recommends a maneuver that will reduce the risk of collision. ACAS standards and recommended practices are mainly defined in annex 10, volume IV, of the Convention on International Civil Aviation. Much of the technology being applied to both military and general aviation today has been undergoing development by NASA and other partners since the 1980s.

<span class="mw-page-title-main">Airport surveillance radar</span> Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

<span class="mw-page-title-main">Transponder (aeronautics)</span> Airborne radio transponder

A transponder is an electronic device that produces a response when it receives a radio-frequency interrogation. Aircraft have transponders to assist in identifying them on air traffic control radar. Collision avoidance systems have been developed to use transponder transmissions as a means of detecting aircraft at risk of colliding with each other.

An equipment code describes the communication (COM), navigation (NAV), approach aids and surveillance transponder equipment on board an aircraft. These alphabetic codes are used on FAA and ICAO flight plan forms to aid Flight service station (FSS) personnel in their handling of aircraft.

Automatic Independent Surveillance – Privacy (AIS-P) is a data packet protocol for the TailLight system of aircraft Traffic Collision Avoidance System (TCAS), wherein a single Mode S 64 microsecond message is transmitted by an aircraft ATCRBS or Mode S transponder, and received by aircraft and Air Traffic Control on the ground. This is an augmentation to aircraft transponders, which report aircraft position and velocity in such a way as to minimize interference with any other avionics system, maximize the possible number of participating aircraft, while not relying on any equipment on the ground, and protecting aircraft from potential attack. AIS-P and ADS-B are competing protocols for aircraft based surveillance of traffic, a replacement technology for Mode S radar and TCAS.

Squitter refers to random pulses, pulse-pairs and other non-solicited messages used in various aviation radio systems' signal maintenance. Squitter pulses were originally, and are still, used in the DME/TACAN air navigation systems. Squitter pulses, because of their randomness and identical appearance to standard reply pulse-pairs, appear the same as unsolicited/unsynchronised replies to other interrogating aircraft.

A portable collision avoidance system (PCAS) is an aircraft collision avoidance system similar in function to traffic collision avoidance system (TCAS). TCAS is the industry standard for commercial collision avoidance systems but PCAS is gaining recognition as an effective means of collision avoidance for general aviation and is in use the world over by independent pilots in personally owned or rented light aircraft as well as by flight schools and flying clubs. Its main competitor is FLARM.

<span class="mw-page-title-main">Automatic Dependent Surveillance–Broadcast</span> Aircraft surveillance technology

Automatic Dependent Surveillance–Broadcast (ADS-B) is an aviation surveillance technology and form of Electronic Conspicuity in which an aircraft determines its position via satellite navigation or other sensors and periodically broadcasts its position and other related data, enabling it to be tracked. The information can be received by air traffic control ground-based or satellite-based receivers as a replacement for secondary surveillance radar (SSR). Unlike SSR, ADS-B does not require an interrogation signal from the ground or from other aircraft to activate its transmissions. ADS-B can also receive point-to-point by other nearby equipped "ADS-B In" equipped aircraft to provide traffic situational awareness and support self-separation. ADS-B is "automatic" in that it requires no pilot or external input to trigger its transmissions. It is "dependent" in that it depends on data from the aircraft's navigation system to provide the transmitted data.

The VHF Data Link or VHF Digital Link (VDL) is a means of sending information between aircraft and ground stations. Aeronautical VHF data links use the band 117.975–137 MHz assigned by the International Telecommunication Union to Aeronautical mobile (R) service. There are ARINC standards for ACARS on VHF and other data links installed on approximately 14,000 aircraft and a range of ICAO standards defined by the Aeronautical Mobile Communications Panel (AMCP) in the 1990s. Mode 2 is the only VDL mode being implemented operationally to support Controller Pilot Data Link Communications (CPDLC).

<span class="mw-page-title-main">Traffic information service – broadcast</span> Aviation information service

Traffic information service – broadcast (TIS–B) is an aviation information service that allows pilots to see aircraft that are not emitting ADS-B data but have a basic transponder.

Wide area multilateration (WAM) is a cooperative aircraft surveillance technology based on the same time difference of arrival principle that is used on an airport surface. WAM is a technique where several ground receiving stations listen to signals transmitted from an aircraft; then the aircraft's location is mathematically calculated -- typically in two dimensions, with the aircraft providing its altitude. Aircraft position, altitude and other data are ultimately transmitted, through an Air Traffic Control automation system, to screens viewed by air traffic controllers for separation of aircraft. It can and has been interfaced to terminal or en-route automation systems.

IFF Mark X was the NATO standard military identification friend or foe transponder system from the early 1950s until it was slowly replaced by the IFF Mark XII in the 1970s. It was also adopted by ICAO, with some modifications, as the civilian air traffic control (ATC) secondary radar (SSR) transponder. The X in the name does not mean "tenth", but "eXperimental". Later IFF models acted as if it was the tenth in the series and used subsequent numbers.

References

  1. 1 2 3 4 NATO STANAG 4193
  2. 1 2 3 4 5 6 Peppler, I.L.: From The Ground Up, pages 238–239. Aviation Publishers Co. Limited, Ottawa Ontario, Twenty Seventh Revised Edition, 1996. ISBN   0-9690054-9-0
  3. Burfeind, Brandon C. (2020). "Interoperable ADS-B Confidentiality". Theses and Dissertations. Air Force Institute of Technology. p. 10.
  4. Manual on Mode S Specific Services (2nd ed.). International Civil Aviation Organization. 2004. ISBN   92-9194-407-6.
  5. "UK Civil Aviation Authority – "ICAO 24 bit Aircraft Addresses"". Caa.co.uk. 2 October 2007. Retrieved 7 February 2013.
  6. "Eurocontrol – "Mode S Technical Overview"". Eurocontrol.int. Archived from the original on 31 March 2013. Retrieved 7 February 2013.
  7. Ralf D. Kloth, DL4TA, Ludwigsburg, D.E. "Aircraft on HFDL - ICAO 24 bit ID". Kloth.Net. Retrieved 7 February 2013.{{cite web}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  8. "Aircraft Database". Airframes.org. 11 August 2005. Retrieved 7 February 2013.
  9. International Civil Aviation Organization (March 2005). "The Third Meeting of Automatic Dependent Surveillance – Broadcast (ADS-B) Study and Implementation Task Force (ADS-B TF/3)" (PDF). Retrieved 28 March 2008.
  10. Eurocontrol – Aeronautical Information Circular (AIC) – ICAO 24-Bit Aircraft Addresses and Aircraft Identification Reporting (in Minutes from The Third Meeting of the Automatic Dependent Surveillance – Broadcast (ADS-B) Study and Implementation Task Force (ADS-B TF/3))
  11. ICAO (2008). ICAO Doc 9871, Technical Provisions for Mode S and Extended Squitter (1st ed.). International Civil Aviation Organization. ISBN   978-92-9231-117-9.
  12. ICAO (2012). ICAO Doc 9871, Technical Provisions for Mode S and Extended Squitter (2nd ed.). International Civil Aviation Organization. ISBN   978-92-9249-042-3.
  13. de Haan, S. (2011). "High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar". JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. 116 (D10). doi:10.1029/2010JD015264. ISSN   2169-897X.
  14. Stone, E. K. (2016). "A Network of Mode-S Receivers for Routine Acquisition of Aircraft-Derived Meteorological Data". JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY. 33 (4). doi: 10.1175/JTECH-D-15-0184.1 . ISSN   0739-0572.
  15. "Expanding collection of weather data from aircraft" (Press release). Met Office. 21 March 2023. Retrieved 5 April 2024.