Radix

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia

In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

Contents

In any standard positional numeral system, a number is conventionally written as (x)y with x as the string of digits and y as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four. [1]

Etymology

Radix is a Latin word for "root". Root can be considered a synonym for base, in the arithmetical sense.

In numeral systems

Generally, in a system with radix b (b > 1), a string of digits d1 ... dn denotes the number d1bn−1 + d2bn−2 + … + dnb0, where 0 ≤ di < b. [1] In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix b would have a ones' place, then a b1s' place, a b2s' place, etc. [2]

For example, if b = 12, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value 5 × 122 + 9 × 121 + 10 × 120 = 838 in base 10.

Commonly used numeral systems include:

Base/radixNameDescription
2 Binary numeral system Used internally by nearly all computers. The two digits are "0" and "1", expressed from switches displaying OFF and ON, respectively. Used in most electric counters.
8 Octal system Used occasionally in computing. The eight digits are "0"–"7" and represent 3 bits (23).
10 Decimal system Used by humans in the wide majority of cultures. Its ten digits are "0"–"9". Used in most mechanical counters.
12 Duodecimal (dozenal) system Sometimes advocated due to divisibility by 2, 3, 4, and 6. It was traditionally used as part of quantities expressed in dozens and grosses.
16 Hexadecimal system Often used in computing as a more compact representation of binary (1 hex digit per 4 bits). The sixteen digits are "0"–"9" followed by "A"–"F" or "a"–"f".
20 Vigesimal system Traditional numeral system in several cultures, still used by some for counting. Historically also known as the score system in English, now most famous in the phrase "four score and seven years ago" in the Gettysburg Address.
36 Base36 Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet). Each base36 digit needs less than 6 bits of information to be represented.
60 Sexagesimal system Originally used in modified form in ancient Sumer and passed to the Babylonians. [3] Used today as the basis of modern circular coordinate system (degrees, minutes, and seconds) and time measuring (minutes, and seconds) by analogy to the rotation of the Earth.

The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 7816 is binary 11110002. Similarly, every octal digit corresponds to a unique sequence of three binary digits, since eight is the cube of two.

This representation is unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed uniquely in the form

where m is a nonnegative integer and the r's are integers such that

0 < rm < b and 0 ≤ ri < b for i = 0, 1, ... , m − 1. [4]

Radices are usually natural numbers. However, other positional systems are possible, for example, golden ratio base (whose radix is a non-integer algebraic number), [5] and negative base (whose radix is negative). [6] A negative base allows the representation of negative numbers without the use of a minus sign. For example, let b = −10. Then a string of digits such as 19 denotes the (decimal) number 1 × (−10)1 + 9 × (−10)0 = −1.

Table of bases

Different bases are especially used in connection with computers. The commonly used bases are 10 (decimal), 2 (binary), 8 (octal), and 16 (hexadecimal). A byte with 8 bits can represent values from 0 to 255, often expressed with leading zeros in base 2, 8 or 16 to give the same length. [7]

The first row in the tables is the base written in decimal.

0–15
102816
00000000000000
10000000100101
20000001000202
30000001100303
40000010000404
50000010100505
60000011000606
70000011100707
80000100001008
90000100101109
10000010100120a
11000010110130b
12000011000140c
13000011010150d
14000011100160e
15000011110170f
16–31
102816
160001000002010
170001000102111
180001001002212
190001001102313
200001010002414
210001010102515
220001011002616
230001011102717
240001100003018
250001100103119
26000110100321a
27000110110331b
28000111000341c
29000111010351d
30000111100361e
31000111110371f
32–47
102816
320010000004020
330010000104121
340010001004222
350010001104323
360010010004424
370010010104525
380010011004626
390010011104727
400010100005028
410010100105129
42001010100522a
43001010110532b
44001011000542c
45001011010552d
46001011100562e
47001011110572f
48–63
102816
480011000006030
490011000106131
500011001006232
510011001106333
520011010006434
530011010106535
540011011006636
550011011106737
560011100007038
570011100107139
58001110100723a
59001110110733b
60001111000743c
61001111010753d
62001111100763e
63001111110773f
64–79
102816
640100000010040
650100000110141
660100001010242
670100001110343
680100010010444
690100010110545
700100011010646
710100011110747
720100100011048
730100100111149
74010010101124a
75010010111134b
76010011001144c
77010011011154d
78010011101164e
79010011111174f
80–95
102816
800101000012050
810101000112151
820101001012252
830101001112353
840101010012454
850101010112555
860101011012656
870101011112757
880101100013058
890101100113159
90010110101325a
91010110111335b
92010111001345c
93010111011355d
94010111101365e
95010111111375f
96–111
102816
960110000014060
970110000114161
980110001014262
990110001114363
1000110010014464
1010110010114565
1020110011014666
1030110011114767
1040110100015068
1050110100115169
106011010101526a
107011010111536b
108011011001546c
109011011011556d
110011011101566e
111011011111576f
112–127
102816
1120111000016070
1130111000116171
1140111001016272
1150111001116373
1160111010016474
1170111010116575
1180111011016676
1190111011116777
1200111100017078
1210111100117179
122011110101727a
123011110111737b
124011111001747c
125011111011757d
126011111101767e
127011111111777f
128–143
102816
1281000000020080
1291000000120181
1301000001020282
1311000001120383
1321000010020484
1331000010120585
1341000011020686
1351000011120787
1361000100021088
1371000100121189
138100010102128a
139100010112138b
140100011002148c
141100011012158d
142100011102168e
143100011112178f
144–159
102816
1441001000022090
1451001000122191
1461001001022292
1471001001122393
1481001010022494
1491001010122595
1501001011022696
1511001011122797
1521001100023098
1531001100123199
154100110102329a
155100110112339b
156100111002349c
157100111012359d
158100111102369e
159100111112379f
160–175
102816
16010100000240a0
16110100001241a1
16210100010242a2
16310100011243a3
16410100100244a4
16510100101245a5
16610100110246a6
16710100111247a7
16810101000250a8
16910101001251a9
17010101010252aa
17110101011253ab
17210101100254ac
17310101101255ad
17410101110256ae
17510101111257af
176–191
102816
17610110000260b0
17710110001261b1
17810110010262b2
17910110011263b3
18010110100264b4
18110110101265b5
18210110110266b6
18310110111267b7
18410111000270b8
18510111001271b9
18610111010272ba
18710111011273bb
18810111100274bc
18910111101275bd
19010111110276be
19110111111277bf
192–207
102816
19211000000300c0
19311000001301c1
19411000010302c2
19511000011303c3
19611000100304c4
19711000101305c5
19811000110306c6
19911000111307c7
20011001000310c8
20111001001311c9
20211001010312ca
20311001011313cb
20411001100314cc
20511001101315cd
20611001110316ce
20711001111317cf
208–223
102816
20811010000320d0
20911010001321d1
21011010010322d2
21111010011323d3
21211010100324d4
21311010101325d5
21411010110326d6
21511010111327d7
21611011000330d8
21711011001331d9
21811011010332da
21911011011333db
22011011100334dc
22111011101335dd
22211011110336de
22311011111337df
224–239
102816
22411100000340e0
22511100001341e1
22611100010342e2
22711100011343e3
22811100100344e4
22911100101345e5
23011100110346e6
23111100111347e7
23211101000350e8
23311101001351e9
23411101010352ea
23511101011353eb
23611101100354ec
23711101101355ed
23811101110356ee
23911101111357ef
240–255
102816
24011110000360f0
24111110001361f1
24211110010362f2
24311110011363f3
24411110100364f4
24511110101365f5
24611110110366f6
24711110111367f7
24811111000370f8
24911111001371f9
25011111010372fa
25111111011373fb
25211111100374fc
25311111101375fd
25411111110376fe
25511111111377ff

See also

Notes

  1. 1 2 Mano, M. Morris; Kime, Charles (2014). Logic and Computer Design Fundamentals (4th ed.). Harlow: Pearson. pp. 13–14. ISBN   978-1-292-02468-4.
  2. "Binary". experimonkey.com. Retrieved 2023-05-14.
  3. Bertman, Stephen (2005). Handbook to Life in Ancient Mesopotamia (Paperback ed.). Oxford [u.a.]: Oxford Univ. Press. p. 257. ISBN   978-019-518364-1.
  4. McCoy (1968 , p. 75)
  5. Bergman, George (1957). "A Number System with an Irrational Base". Mathematics Magazine. 31 (2): 98–110. doi:10.2307/3029218. JSTOR   3029218.
  6. William J. Gilbert (September 1979). "Negative Based Number Systems" (PDF). Mathematics Magazine. 52 (4): 240–244. doi:10.1080/0025570X.1979.11976792 . Retrieved 7 February 2015.
  7. "Conversion Table – Decimal, Hexidecimal, Octol, Binary" (PDF). SecurityWizardry.com. Retrieved 7 April 2025.

References