Arabic numerals

Last updated

Arabic numerals set in Source Sans typeface Hindu-Arabic numerals.svg
Arabic numerals set in Source Sans typeface

The ten Arabic numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) are the most commonly used symbols for writing numbers. The term often also implies a positional notation number with a decimal base, in particular when contrasted with Roman numerals. However the symbols are also used to write numbers in other bases, such as octal, as well as non-numerical information such as trademarks or license plate identifiers.

Contents

They are also called Western Arabic numerals, Western digits, European digits, [1] Ghubār numerals, or Hindu–Arabic numerals [2] due to positional notation (but not these digits) originating in India. The Oxford English Dictionary uses lowercase Arabic numerals while using the fully capitalized term Arabic Numerals for Eastern Arabic numerals. [3] In contemporary society, the terms digits, numbers, and numerals often implies only these symbols, although it can only be inferred from context.

Europeans first learned of Arabic numerals c.the 10th century, though their spread was a gradual process. After Italian scholar Fibonacci of Pisa encountered the numerals in the Algerian city of Béjaïa, his 13th-century work Liber Abaci became crucial in making them known in Europe. However, their use was largely confined to Northern Italy until the invention of the printing press in the 15th century. [4] European trade, books, and colonialism subsequently helped popularize the adoption of Arabic numerals around the world. The numerals are used worldwide—significantly beyond the contemporary spread of the Latin alphabet—and have become common in the writing systems where other numeral systems existed previously, such as Chinese and Japanese numerals.

History

Origin

Evolution of Indian numerals into Arabic numerals and their adoption in Europe The Brahmi numeral system and its descendants.png
Evolution of Indian numerals into Arabic numerals and their adoption in Europe

Positional decimal notation including a zero symbol was developed in India, using symbols visually distinct from those that would eventually enter into international use. As the concept spread, the sets of symbols used in different regions diverged over time.

The immediate ancestors of the digits now commonly called "Arabic numerals" were introduced to Europe in the 10th century by Arabic speakers of Spain and North Africa, with digits at the time in wide use from Libya to Morocco. In the east from Egypt to Iraq and the Arabian Peninsula, the Arabs were using the Eastern Arabic numerals or "Mashriki" numerals: ٠, ١, ٢, ٣, ٤, ٥, ٦, ٧, ٨, ٩. [5]

Al-Nasawi wrote in the early 11th century that mathematicians had not agreed on the form of the numerals, but most of them had agreed to train themselves with the forms now known as Eastern Arabic numerals. [6] The oldest specimens of the written numerals available are from Egypt and date to 873–874 AD. They show three forms of the numeral "2" and two forms of the numeral "3", and these variations indicate the divergence between what later became known as the Eastern Arabic numerals and the Western Arabic numerals. [7] The Western Arabic numerals came to be used in the Maghreb and Al-Andalus from the 10th century onward. [8] Some amount of consistency in the Western Arabic numeral forms endured from the 10th century, found in a Latin manuscript of Isidore of Seville's Etymologiae from 976 and the Gerbertian abacus, into the 12th and 13th centuries, in early manuscripts of translations from the city of Toledo. [5]

Calculations were originally performed using a dust board (takht, Latin: tabula), which involved writing symbols with a stylus and erasing them. The use of the dust board appears to have introduced a divergence in terminology as well: whereas the Hindu reckoning was called ḥisāb al-hindī in the east, it was called ḥisāb al-ghubār 'calculation with dust' in the west. [9] The numerals themselves were referred to in the west as ashkāl al‐ghubār 'dust figures' or qalam al-ghubår 'dust letters'. [10] Al-Uqlidisi later invented a system of calculations with ink and paper 'without board and erasing' (bi-ghayr takht wa-lā maḥw bal bi-dawāt wa-qirṭās). [11]

A popular myth claims that the symbols were designed to indicate their numeric value through the number of angles they contained, but there is no contemporary evidence of this, and the myth is difficult to reconcile with any digits past 4. [12]

Etching from 1503 (or earlier) showing usage of Arabic numerals Gregor Reisch, Margarita Philosophica, 1508 (1230x1615).png
Etching from 1503 (or earlier) showing usage of Arabic numerals

Adoption and spread

The first Arabic numerals in the West appeared in the Codex Albeldensis
in Spain. Codex Vigilanus Primeros Numeros Arabigos.jpg
The first Arabic numerals in the West appeared in the Codex Albeldensis in Spain.

The first mentions of the numerals from 1 to 9 in the West are found in the 976 Codex Vigilanus , an illuminated collection of various historical documents covering a period from antiquity to the 10th century in Hispania. [13] Other texts show that numbers from 1 to 9 were occasionally supplemented by a placeholder known as sipos, represented as a circle or wheel, reminiscent of the eventual symbol for zero. The Arabic term for zero is ṣifr (صفر), transliterated into Latin as cifra, which became the English word cipher .

From the 980s, Gerbert of Aurillac (later Pope Sylvester II) used his position to spread knowledge of the numerals in Europe. Gerbert studied in Barcelona in his youth. He was known to have requested mathematical treatises concerning the astrolabe from Lupitus of Barcelona after he had returned to France. [13]

The reception of Arabic numerals in the West was gradual and lukewarm, as other numeral systems circulated in addition to the older Roman numbers. As a discipline, the first to adopt Arabic numerals as part of their own writings were astronomers and astrologists, evidenced from manuscripts surviving from mid-12th-century Bavaria. Reinher of Paderborn (1140–1190) used the numerals in his calendrical tables to calculate the dates of Easter more easily in his text Computus emendatus. [14]

Italy

A page of the Liber Abaci. The list on the right shows the Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals. Liber abbaci magliab f124r.jpg
A page of the Liber Abaci. The list on the right shows the Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals.

Leonardo Fibonacci was a Pisan mathematician who had studied in the Pisan trading colony of Bugia, in what is now Algeria, [15] and he endeavored to promote the numeral system in Europe with his 1202 book Liber Abaci :

When my father, who had been appointed by his country as public notary in the customs at Bugia acting for the Pisan merchants going there, was in charge, he summoned me to him while I was still a child, and having an eye to usefulness and future convenience, desired me to stay there and receive instruction in the school of accounting. There, when I had been introduced to the art of the Indians' nine symbols through remarkable teaching, knowledge of the art very soon pleased me above all else and I came to understand it.

The Liber Abaci's analysis highlighting the advantages of positional notation was widely influential. Likewise, Fibonacci's use of the Béjaïa digits in his exposition ultimately led to their widespread adoption in Europe. [16] Fibonacci's work coincided with the European commercial revolution of the 12th and 13th centuries centered in Italy. Positional notation facilitated complex calculations (such as currency conversion) to be completed more quickly than was possible with the Roman system. In addition, the system could handle larger numbers, did not require a separate reckoning tool, and allowed the user to check their work without repeating the entire procedure. Late medieval Italian merchants did not stop using Roman numerals or other reckoning tools: instead, Arabic numerals were adopted for use in addition to their preexisting methods. [16]

Europe

A German manuscript page teaching use of Arabic numerals (Talhoffer Thott, 1459), presented together with the Hebrew alphabet and astrology. Ms.Thott.290.2o 150v.jpg
A German manuscript page teaching use of Arabic numerals (Talhoffer Thott, 1459), presented together with the Hebrew alphabet and astrology.
Table of numerals in many variants, 1757, by Jean-Etienne Montucla EuropeanFormOfArabianDigits.png
Table of numerals in many variants, 1757, by Jean-Étienne Montucla

By the late 14th century, only a few texts using Arabic numerals appeared outside of Italy. This suggests that the use of Arabic numerals in commercial practice, and the significant advantage they conferred, remained a virtual Italian monopoly until the late 15th century. [16] This may in part have been due to language barriers: although Fibonacci's Liber Abaci was written in Latin, the Italian abacus traditions were predominantly written in Italian vernaculars that circulated in the private collections of abacus schools or individuals.

The European acceptance of the numerals was accelerated by the invention of the printing press, and they became widely known during the 15th century. Their use grew steadily in other centers of finance and trade such as Lyon. [17] Early evidence of their use in Britain includes: an equal hour horary quadrant from 1396, [18] in England, a 1445 inscription on the tower of Heathfield Church, Sussex; a 1448 inscription on a wooden lych-gate of Bray Church, Berkshire; and a 1487 inscription on the belfry door at Piddletrenthide church, Dorset; and in Scotland a 1470 inscription on the tomb of the first Earl of Huntly in Elgin Cathedral. [19] In central Europe, the King of Hungary Ladislaus the Posthumous, started the use of Arabic numerals, which appear for the first time in a royal document of 1456. [20]

By the mid-16th century, they had been widely adopted in Europe, and by 1800 had almost completely replaced the use of counting boards and Roman numerals in accounting. Roman numerals were mostly relegated to niche uses such as years and numbers on clock faces.

Russia

Prior to the introduction of Arabic numerals, Cyrillic numerals, derived from the Cyrillic alphabet, were used by South and East Slavs. The system was used in Russia as late as the early 18th century, although it was formally replaced in official use by Peter the Great in 1699. [21] Reasons for Peter's switch from the alphanumerical system are believed to go beyond a surface-level desire to imitate the West. Historian Peter Brown makes arguments for sociological, militaristic, and pedagogical reasons for the change. At a broad, societal level, Russian merchants, soldiers, and officials increasingly came into contact with counterparts from the West and became familiar with the communal use of Arabic numerals. Peter also covertly travelled throughout Northern Europe from 1697 to 1698 during his Grand Embassy and was likely informally exposed to Western mathematics during this time. [22] The Cyrillic system was found to be inferior for calculating practical kinematic values, such as the trajectories and parabolic flight patterns of artillery. With its use, it was difficult to keep pace with Arabic numerals in the growing field of ballistics, whereas Western mathematicians such as John Napier had been publishing on the topic since 1614. [23]

China

Chinese Shang dynasty oracle bone numerals of 14th century BC Shang numerals to brahmi.jpg
Chinese Shang dynasty oracle bone numerals of 14th century BC

The Chinese Shang dynasty numerals from the 14th century BC predates the Indian Brahmi numerals by over 1000 years and shows substantial similarity to the Brahmi numerals. Similar to the modern Arabic numerals, the Shang dynasty numeral system was also decimal based and positional. [24] [25]

While positional Chinese numeral systems such as the counting rod system and Suzhou numerals had been in use prior to the introduction of modern Arabic numerals, [26] [27] the externally-developed system was eventually introduced to medieval China by the Hui people. In the early 17th century, European-style Arabic numerals were introduced by Spanish and Portuguese Jesuits. [28] [29] [30]

Encoding

The ten Arabic numerals are encoded in virtually every character set designed for electric, radio, and digital communication, such as Morse code. They are encoded in ASCII (and therefore in Unicode encodings [31] ) at positions 0x30 to 0x39. Masking all but the four least-significant binary digits gives the value of the decimal digit, a design decision facilitating the digitization of text onto early computers. EBCDIC used a different offset, but also possessed the aforementioned masking property.

ASCIIUnicodeEBCDIC
hex
binaryoctaldecimalhex
00011 00000604830U+0030 DIGIT ZEROF0
10011 00010614931U+0031 DIGIT ONEF1
20011 00100625032U+0032 DIGIT TWOF2
30011 00110635133U+0033 DIGIT THREEF3
40011 01000645234U+0034 DIGIT FOURF4
50011 01010655335U+0035 DIGIT FIVEF5
60011 01100665436U+0036 DIGIT SIXF6
70011 01110675537U+0037 DIGIT SEVENF7
80011 10000705638U+0038 DIGIT EIGHTF8
90011 10010715739U+0039 DIGIT NINEF9

See also

Footnotes

  1. Terminology for Digits Archived 26 October 2021 at the Wayback Machine . Unicode Consortium.
  2. "Arabic numeral". American Heritage Dictionary . Houghton Mifflin Harcourt. 2020. Archived from the original on 21 November 2021. Retrieved 21 November 2021.
  3. "Arabic", Oxford English Dictionary, 2nd edition
  4. Danna, Raffaele (13 January 2021). "Figuring Out: The Spread of Hindu–Arabic Numerals in the European Tradition of Practical Mathematics (13th–16th Centuries)". Nuncius. 36 (1): 5–48. doi: 10.1163/18253911-bja10004 . ISSN   0394-7394.
  5. 1 2 Burnett, Charles (2002). Dold-Samplonius, Yvonne; Van Dalen, Benno; Dauben, Joseph; Folkerts, Menso (eds.). From China to Paris: 2000 Years Transmission of Mathematical Ideas. Franz Steiner Verlag. pp. 237–288. ISBN   978-3-515-08223-5.
  6. Kunitzsch 2003 , p. 7: "Les personnes qui se sont occupées de la science du calcul n'ont pas été d'accord sur une partie des formes de ces neuf signes; mais la plupart d'entre elles sont convenues de les former comme il suit."
  7. Kunitzsch 2003, p. 5.
  8. Kunitzsch 2003 , pp. 12–13: "While specimens of Western Arabic numerals from the early period—the tenth to thirteenth centuries—are still not available, we know at least that Hindu reckoning (called ḥisāb al-ghubār) was known in the West from the 10th century onward..."
  9. Kunitzsch 2003, p. 8.
  10. Kunitzsch 2003, p. 10.
  11. Kunitzsch 2003, pp. 7–8.
  12. Ifrah, Georges (1998). The universal history of numbers: from prehistory to the invention of the computer. Translated by Bellos, David. London: Harvill. pp. 356–357. ISBN   978-1-860-46324-2.
  13. 1 2 Nothaft, C. Philipp E. (3 May 2020). "Medieval Europe's satanic ciphers: on the genesis of a modern myth". British Journal for the History of Mathematics. 35 (2): 107–136. doi:10.1080/26375451.2020.1726050. ISSN   2637-5451. S2CID   213113566.
  14. Herold, Werner (2005). "Der "computus emendatus" des Reinher von Paderborn". ixtheo.de (in German). Archived from the original on 30 July 2022. Retrieved 29 July 2022.
  15. Tung, K. K. (2016). Topics in Mathematical Modeling. Princeton University Press. p. 1. ISBN   978-1-4008-8405-6.
  16. 1 2 3 Danna, Raffaele (12 July 2021). The Spread of Hindu–Arabic Numerals in the European Tradition of Practical Arithmetic: a Socio-Economic Perspective (13th–16th centuries) (PhD thesis). University of Cambridge. doi:10.17863/cam.72497. Archived from the original on 27 July 2021. Retrieved 29 July 2022.
  17. Danna, Raffaele; Iori, Martina; Mina, Andrea (22 June 2022). "A Numerical Revolution: The Diffusion of Practical Mathematics and the Growth of Pre-modern European Economies". SSRN   4143442.
  18. "14th century timepiece unearthed in Qld farm shed". ABC News. Archived from the original on 29 February 2012. Retrieved 10 November 2011.
  19. See G. F. Hill, The Development of Arabic Numerals in Europe, for more examples.
  20. Erdélyi: Magyar művelődéstörténet 1-2. kötet. Kolozsvár, 1913, 1918.
  21. Conatser Segura, Sylvia (26 May 2020). Orthographic Reform and Language Planning in Russian History (Honors thesis). Archived from the original on 30 July 2022. Retrieved 29 July 2022.
  22. Brown, Peter B. (2012). "Muscovite Arithmetic in Seventeenth-Century Russian Civilization: Is It Not Time to Discard the "Backwardness" Label?". Russian History. 39 (4): 393–459. doi:10.1163/48763316-03904001. ISSN   0094-288X. Archived from the original on 30 July 2022. Retrieved 29 July 2022.
  23. Lockwood, E. H. (October 1978). "Mathematical discoveries 1600-1750, by P. L. Griffiths. Pp 121. £2·75. 1977. ISBN 0 7223 1006 4 (Stockwell)". The Mathematical Gazette. 62 (421): 219. doi:10.2307/3616704. ISSN   0025-5572. JSTOR   3616704. Archived from the original on 30 July 2022. Retrieved 29 July 2022.
  24. 1 2 Campbell, Douglas M.; Higgins, John C. (1984). Mathematics: People, Problems, Results. Taylor & Francis. ISBN   978-0-534-02879-4.
  25. 1 2 The Shorter Science & Civilisation in China Vol 2, An abridgement by Colin Ronan of Joseph Needham's original text, Table 20, p. 6, Cambridge University Press ISBN   0-521-23582-0
  26. Shell-Gellasch, Amy (2015). Algebra in context : introductory algebra from origins to applications. J. B. Thoo. Baltimore. ISBN   978-1-4214-1728-8.{{cite book}}: CS1 maint: location missing publisher (link)
  27. Uy, Frederick L. (January 2003). "The Chinese Numeration System and Place Value". Teaching Children Mathematics. 9 (5): 243–247. doi:10.5951/tcm.9.5.0243. ISSN   1073-5836.
  28. Selin, Helaine, ed. (1997). Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer. p. 198. ISBN   978-0-7923-4066-9. Archived from the original on 27 October 2015. Retrieved 18 October 2015.
  29. Meuleman, Johan H. (2002). Islam in the era of globalization: Muslim attitudes towards modernity and identity. Psychology Press. p. 272. ISBN   978-0-7007-1691-3. Archived from the original on 27 October 2015. Retrieved 18 October 2015.
  30. Peng Yoke Ho (2000). Li, Qi and Shu: An Introduction to Science and Civilization in China. Mineola, NY: Courier Dover Publications. p. 106. ISBN   978-0-486-41445-4. Archived from the original on 27 October 2015. Retrieved 18 October 2015.
  31. "The Unicode Standard, Version 13.0" (PDF). unicode.org. Archived (PDF) from the original on 2 June 2001. Retrieved 1 September 2021.

Sources

Further reading

Related Research Articles

<span class="mw-page-title-main">Decimal</span> Number in base-10 numeral system

The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.

<span class="mw-page-title-main">Fibonacci</span> Italian mathematician (c. 1170 – c. 1240/50)

Fibonacci was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages".

<span class="mw-page-title-main">Numeral system</span> Notation for expressing numbers

A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.

0 (zero) is a number representing an empty quantity. Adding 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 results in 0, and consequently division by zero has no meaning in arithmetic.

<span class="mw-page-title-main">Decimal separator</span> Numerical symbol

A decimal separator is a symbol that separates the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol also affects the choice of symbol for the thousands separator used in digit grouping.

<i>Liber Abaci</i> Mathematics book written in 1202 by Fibonacci

The Liber Abaci or Liber Abbaci was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for introducing both base-10 positional notation and the symbols known as Arabic numerals in Europe.

A numerical digit or numeral is a single symbol used alone, or in combinations, to represent numbers in positional notation, such as the common base 10. The name "digit" originates from the Latin digiti meaning fingers.

<span class="mw-page-title-main">Algorism</span> Mathematical technique for arithmetic

Algorism is the technique of performing basic arithmetic by writing numbers in place value form and applying a set of memorized rules and facts to the digits. One who practices algorism is known as an algorist. This positional notation system has largely superseded earlier calculation systems that used a different set of symbols for each numerical magnitude, such as Roman numerals, and in some cases required a device such as an abacus.

<span class="mw-page-title-main">Positional notation</span> Method for representing or encoding numbers

Positional notation, also known as place-value notation, positional numeral system, or simply place value, usually denotes the extension to any base of the Hindu–Arabic numeral system. More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred. In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string.

The Suzhou numerals, also known as Sūzhōu mǎzi (蘇州碼子), is a numeral system used in China before the introduction of Hindu numerals. The Suzhou numerals are also known as huāmǎ (花碼), cǎomǎ (草碼), jīngzǐmǎ (菁仔碼), fānzǐmǎ (番仔碼) and shāngmǎ (商碼).

Lattice multiplication, also known as the Italian method, Chinese method, Chinese lattice, gelosia multiplication, sieve multiplication, shabakh, diagonally or Venetian squares, is a method of multiplication that uses a lattice to multiply two multi-digit numbers. It is mathematically identical to the more commonly used long multiplication algorithm, but it breaks the process into smaller steps, which some practitioners find easier to use.

The Hindu–Arabic numeral system is a decimal place-value numeral system that uses a zero glyph as in "205".

<span class="mw-page-title-main">Hindu–Arabic numeral system</span> Most common system for writing numbers

The Hindu–Arabic numeral system is a positional base-ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

<span class="mw-page-title-main">Eastern Arabic numerals</span> Numerals used in the eastern Arab world and Asia

The Eastern Arabic numerals, also called Indo-Arabic numerals, are the symbols used to represent numerical digits in conjunction with the Arabic alphabet in the countries of the Mashriq, the Arabian Peninsula, and its variant in other countries that use the Persian numerals on the Iranian plateau and in Asia.

A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.

A timeline of numerals and arithmetic.

<span class="mw-page-title-main">Kaktovik numerals</span> Inuit numeral system for a base-20 counting system

The Kaktovik numerals or Kaktovik Iñupiaq numerals are a base-20 system of numerical digits created by Alaskan Iñupiat. They are visually iconic, with shapes that indicate the number being represented.

<i>Principles of Hindu Reckoning</i>

Principles of Hindu Reckoning is a mathematics book written by the 10th- and 11th-century Persian mathematician Kushyar ibn Labban. It is the second-oldest book extant in Arabic about Hindu arithmetic using Hindu-Arabic numerals, preceded by Kitab al-Fusul fi al-Hisub al-Hindi by Abul al-Hassan Ahmad ibn Ibrahim al-Uglidis, written in 952.

An alphabetic numeral system is a type of numeral system. Developed in classical antiquity, it flourished during the early Middle Ages. In alphabetic numeral systems, numbers are written using the characters of an alphabet, syllabary, or another writing system. Unlike acrophonic numeral systems, where a numeral is represented by the first letter of the lexical name of the numeral, alphabetic numeral systems can arbitrarily assign letters to numerical values. Some systems, including the Arabic, Georgian and Hebrew systems, use an already established alphabetical order. Alphabetic numeral systems originated with Greek numerals around 600 BC and became largely extinct by the 16th century. After the development of positional numeral systems like Hindu–Arabic numerals, the use of alphabetic numeral systems dwindled to predominantly ordered lists, pagination, religious functions, and divinatory magic.