Part of a series on |
Numeral systems |
---|
List of numeral systems |
There are many different numeral systems, that is, writing systems for expressing numbers.
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1] : 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1] Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base).
Name | Base | Sample | Approx. First Appearance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proto-cuneiform numerals | 10&60 | c. 3500–2000 BCE | ||||||||||
Indus numerals | unknown [2] | c. 3500–1900 BCE [2] | ||||||||||
Proto-Elamite numerals | 10&60 | 3100 BCE | ||||||||||
Sumerian numerals | 10&60 | 3100 BCE | ||||||||||
Egyptian numerals | 10 | 3000 BCE | ||||||||||
Babylonian numerals | 10&60 | 2000 BCE | ||||||||||
Aegean numerals | 10 | 𐄇 𐄈 𐄉 𐄊 𐄋 𐄌 𐄍 𐄎 𐄏 ( ) 𐄐 𐄑 𐄒 𐄓 𐄔 𐄕 𐄖 𐄗 𐄘 ( ) 𐄙 𐄚 𐄛 𐄜 𐄝 𐄞 𐄟 𐄠 𐄡 ( ) 𐄢 𐄣 𐄤 𐄥 𐄦 𐄧 𐄨 𐄩 𐄪 ( ) 𐄫 𐄬 𐄭 𐄮 𐄯 𐄰 𐄱 𐄲 𐄳 ( ) | 1500 BCE | |||||||||
Chinese numerals Japanese numerals Korean numerals (Sino-Korean) Vietnamese numerals (Sino-Vietnamese) | 10 | 零一二三四五六七八九十百千萬億 (Default, Traditional Chinese) | 1300 BCE | |||||||||
Roman numerals | 5&10 | I V X L C D M | 1000 BCE [1] | |||||||||
Hebrew numerals | 10 | א ב ג ד ה ו ז ח ט י כ ל מ נ ס ע פ צ ק ר ש ת ך ם ן ף ץ | 800 BCE | |||||||||
Indian numerals | 10 | Bengali ০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯ Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९ Gujarati ૦ ૧ ૨ ૩ ૪ ૫ ૬ ૭ ૮ ૯ Kannada ೦ ೧ ೨ ೩ ೪ ೫ ೬ ೭ ೮ ೯ Malayalam ൦ ൧ ൨ ൩ ൪ ൫ ൬ ൭ ൮ ൯ Odia ୦ ୧ ୨ ୩ ୪ ୫ ୬ ୭ ୮ ୯ Punjabi ੦ ੧ ੨ ੩ ੪ ੫ ੬ ੭ ੮ ੯ Tamil ௦ ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯ Telugu ౦ ౧ ౨ ౩ ౪ ౫ ౬ ౭ ౮ ౯ Tibetan ༠ ༡ ༢ ༣ ༤ ༥ ༦ ༧ ༨ ༩ Urdu ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹ | 750–500 BCE | |||||||||
Greek numerals | 10 | ō α β γ δ ε ϝ ζ η θ ι ο Αʹ Βʹ Γʹ Δʹ Εʹ Ϛʹ Ζʹ Ηʹ Θʹ | <400 BCE | |||||||||
Kharosthi numerals | 4&10 | 𐩇 𐩆 𐩅 𐩄 𐩃 𐩂 𐩁 𐩀 | <400–250 BCE [3] | |||||||||
Phoenician numerals | 10 | 𐤙 𐤘 𐤗 𐤛𐤛𐤛 𐤛𐤛𐤚 𐤛𐤛𐤖 𐤛𐤛 𐤛𐤚 𐤛𐤖 𐤛 𐤚 𐤖 [4] | <250 BCE [5] | |||||||||
Chinese rod numerals | 10 | 𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 𝍩 | 1st Century | |||||||||
Coptic numerals | 10 | Ⲁ Ⲃ Ⲅ Ⲇ Ⲉ Ⲋ Ⲍ Ⲏ Ⲑ | 2nd Century | |||||||||
Ge'ez numerals | 10 | ፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱ ፲ ፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻ ፼ [6] | 3rd–4th Century 15th Century (Modern Style) [7] : 135–136 | |||||||||
Armenian numerals | 10 | Ա Բ Գ Դ Ե Զ Է Ը Թ Ժ | Early 5th Century | |||||||||
Khmer numerals | 10 | ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩ | Early 7th Century | |||||||||
Thai numerals | 10 | ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ | 7th Century [8] | |||||||||
Abjad numerals | 10 | غ ظ ض ذ خ ث ت ش ر ق ص ف ع س ن م ل ك ي ط ح ز و هـ د ج ب ا | <8th Century | |||||||||
Chinese numerals (financial) | 10 | 零壹貳參肆伍陸柒捌玖拾佰仟萬億 (T. Chinese) 零壹贰叁肆伍陆柒捌玖拾佰仟萬億 (S. Chinese) | late 7th/early 8th Century [9] | |||||||||
Eastern Arabic numerals | 10 | ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ | 8th Century | |||||||||
Vietnamese numerals (Chữ Nôm) | 10 | 𠬠 𠄩 𠀧 𦊚 𠄼 𦒹 𦉱 𠔭 𠃩 | <9th Century | |||||||||
Western Arabic numerals | 10 | 0 1 2 3 4 5 6 7 8 9 | 9th Century | |||||||||
Glagolitic numerals | 10 | Ⰰ Ⰱ Ⰲ Ⰳ Ⰴ Ⰵ Ⰶ Ⰷ Ⰸ ... | 9th Century | |||||||||
Cyrillic numerals | 10 | а в г д е ѕ з и ѳ і ... | 10th Century | |||||||||
Rumi numerals | 10 | 10th Century | ||||||||||
Burmese numerals | 10 | ၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉ | 11th Century [10] | |||||||||
Tangut numerals | 10 | 𘈩 𗍫 𘕕 𗥃 𗏁 𗤁 𗒹 𘉋 𗢭 𗰗 | 11th Century (1036) | |||||||||
Cistercian numerals | 10 | 13th Century | ||||||||||
Maya numerals | 5&20 | <15th Century | ||||||||||
Muisca numerals | 20 | <15th Century | ||||||||||
Korean numerals (Hangul) | 10 | 영 일 이 삼 사 오 육 칠 팔 구 | 15th Century (1443) | |||||||||
Aztec numerals | 20 | 16th Century | ||||||||||
Sinhala numerals | 10 | ෦ ෧ ෨ ෩ ෪ ෫ ෬ ෭ ෮ ෯ 𑇡 𑇢 𑇣 𑇤 𑇥 𑇦 𑇧 𑇨 𑇩 𑇪 𑇫 𑇬 𑇭 𑇮 𑇯 𑇰 𑇱 𑇲 𑇳 𑇴 | <18th Century | |||||||||
Pentadic runes | 10 | 19th Century | ||||||||||
Cherokee numerals | 10 | 19th Century (1820s) | ||||||||||
Vai numerals | 10 | ꘠ ꘡ ꘢ ꘣ ꘤ ꘥ ꘦ ꘧ ꘨ ꘩ [11] | 19th Century (1832) [12] | |||||||||
Bamum numerals | 10 | ꛯ ꛦ ꛧ ꛨ ꛩ ꛪ ꛫ ꛬ ꛭ ꛮ [13] | 19th Century (1896) [12] | |||||||||
Mende Kikakui numerals | 10 | 𞣏 𞣎 𞣍 𞣌 𞣋 𞣊 𞣉 𞣈 𞣇 [14] | 20th Century (1917) [15] | |||||||||
Osmanya numerals | 10 | 𐒠 𐒡 𐒢 𐒣 𐒤 𐒥 𐒦 𐒧 𐒨 𐒩 | 20th Century (1920s) | |||||||||
Medefaidrin numerals | 20 | 𖺀 𖺁/𖺔 𖺂/𖺕 𖺃/𖺖 𖺄 𖺅 𖺆 𖺇 𖺈 𖺉 𖺊 𖺋 𖺌 𖺍 𖺎 𖺏 𖺐 𖺑 𖺒 𖺓 [16] | 20th Century (1930s) [17] | |||||||||
N'Ko numerals | 10 | ߉ ߈ ߇ ߆ ߅ ߄ ߃ ߂ ߁ ߀ [18] | 20th Century (1949) [19] | |||||||||
Hmong numerals | 10 | 𖭐𖭑𖭒𖭓𖭔𖭕𖭖𖭗𖭘𖭑𖭐 | 20th Century (1959) | |||||||||
Garay numerals | 10 | [20] | 20th Century (1961) [21] | |||||||||
Adlam numerals | 10 | 𞥙 𞥘 𞥗 𞥖 𞥕 𞥔 𞥓 𞥒 𞥑 𞥐 [22] | 20th Century (1989) [23] | |||||||||
Kaktovik numerals | 5&20 | 𝋀 𝋁 𝋂 𝋃 𝋄 𝋅 𝋆 𝋇 𝋈 𝋉 𝋊 𝋋 𝋌 𝋍 𝋎 𝋏 𝋐 𝋑 𝋒 𝋓 [24] | 20th Century (1994) [25] | |||||||||
Sundanese numerals | 10 | ᮰ ᮱ ᮲ ᮳ ᮴ ᮵ ᮶ ᮷ ᮸ ᮹ | 20th Century (1996) [26] |
Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.
The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name. [27] There have been some proposals for standardisation. [28]
Base | Name | Usage |
---|---|---|
2 | Binary | Digital computing, imperial and customary volume (bushel-kenning-peck-gallon-pottle-quart-pint-cup-gill-jack-fluid ounce-tablespoon) |
3 | Ternary, trinary [29] | Cantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base |
4 | Quaternary | Chumashan languages and Kharosthi numerals |
5 | Quinary | Gumatj, Ateso, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks |
6 | Senary, seximal | Diceware, Ndom, Kanum, and Proto-Uralic language (suspected) |
7 | Septimal, Septenary [30] | Weeks timekeeping, Western music letter notation |
8 | Octal | Charles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, Yuki, Pame, compact notation for binary numbers, Xiantian (I Ching, China) |
9 | Nonary, nonal | Compact notation for ternary |
10 | Decimal, denary | Most widely used by contemporary societies [31] [32] [33] |
11 | Undecimal, unodecimal, undenary | A base-11 number system was attributed to the Māori (New Zealand) in the 19th century [34] and the Pangwa (Tanzania) in the 20th century. [35] Briefly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal. Used as a check digit in ISBN for 10-digit ISBNs. Applications in computer science and technology. [36] [37] [38] Featured in popular fiction. |
12 | Duodecimal, dozenal | Languages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Roman fractions; penny and shilling |
13 | Tredecimal, tridecimal [39] [40] | Conway base 13 function. |
14 | Quattuordecimal, quadrodecimal [39] [40] | Programming for the HP 9100A/B calculator [41] and image processing applications; [42] pound and stone. |
15 | Quindecimal, pentadecimal [43] [40] | Telephony routing over IP, and the Huli language. |
16 | Hexadecimal, sexadecimal, sedecimal | Compact notation for binary data; tonal system; ounce and pound. |
17 | Septendecimal, heptadecimal [43] [40] | |
18 | Octodecimal [43] [40] | A base in which 7n is palindromic for n = 3, 4, 6, 9. |
19 | Undevicesimal, nonadecimal [43] [40] | |
20 | Vigesimal | Basque, Celtic, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages; shilling and pound |
5&20 | Quinary-vigesimal [44] [45] [46] | Greenlandic, Iñupiaq, Kaktovik, Maya, Nunivak Cupʼig, and Yupʼik numerals – "wide-spread... in the whole territory from Alaska along the Pacific Coast to the Orinoco and the Amazon" [44] |
21 | The smallest base in which all fractions 1/2 to 1/18 have periods of 4 or shorter. | |
23 | Kalam language, [47] Kobon language [ citation needed ] | |
24 | Quadravigesimal [48] | 24-hour clock timekeeping; Greek alphabet; Kaugel language. |
25 | Sometimes used as compact notation for quinary. | |
26 | Hexavigesimal [48] [49] | Sometimes used for encryption or ciphering, [50] using all letters in the English alphabet |
27 | Septemvigesimal | Telefol, [47] Oksapmin, [51] Wambon, [52] and Hewa [53] languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names, [54] to provide a concise encoding of alphabetic strings, [55] or as the basis for a form of gematria. [56] Compact notation for ternary. |
28 | Months timekeeping. | |
30 | Trigesimal | The Natural Area Code, this is the smallest base such that all of 1/2 to 1/6 terminate, a number n is a regular number if and only if 1/n terminates in base 30. |
32 | Duotrigesimal | Found in the Ngiti language. |
33 | Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong. | |
34 | Using all numbers and all letters except I and O; the smallest base where 1/2 terminates and all of 1/2 to 1/18 have periods of 4 or shorter. | |
35 | Covers the ten decimal digits and all letters of the English alphabet, apart from not distinguishing 0 from O. | |
36 | Hexatrigesimal [57] [58] | Covers the ten decimal digits and all letters of the English alphabet. |
37 | Covers the ten decimal digits and all letters of the Spanish alphabet. | |
38 | Covers the duodecimal digits and all letters of the English alphabet. | |
40 | Quadragesimal | DEC RADIX 50/MOD40 encoding used to compactly represent file names and other symbols on Digital Equipment Corporation computers. The character set is a subset of ASCII consisting of space, upper case letters, the punctuation marks "$", ".", and "%", and the numerals. |
42 | Largest base for which all minimal primes are known. | |
47 | Smallest base for which no generalized Wieferich primes are known. | |
49 | Compact notation for septenary. | |
50 | Quinquagesimal | SQUOZE encoding used to compactly represent file names and other symbols on some IBM computers. Encoding using all Gurmukhi characters plus the Gurmukhi digits. |
52 | Covers the digits and letters assigned to base 62 apart from the basic vowel letters; [59] similar to base 26 but distinguishing upper- and lower-case letters. | |
56 | A variant of base 58.[ clarification needed ] [60] | |
57 | Covers base 62 apart from I, O, l, U, and u, [61] or I, 1, l, 0, and O. [62] | |
58 | Covers base 62 apart from 0 (zero), I (capital i), O (capital o) and l (lower case L). [63] | |
60 | Sexagesimal | Babylonian numerals and Sumerian; degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari; covers base 62 apart from I, O, and l, but including _(underscore). [64] |
62 | Can be notated with the digits 0–9 and the cased letters A–Z and a–z of the English alphabet. | |
64 | Tetrasexagesimal | I Ching in China. This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters (+ and /). |
72 | The smallest base greater than binary such that no three-digit narcissistic number exists. | |
80 | Octogesimal | Used as a sub-base in Supyire. |
85 | Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. | |
89 | Largest base for which all left-truncatable primes are known. | |
90 | Nonagesimal | Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2). |
95 | Number of printable ASCII characters. [65] | |
96 | Total number of character codes in the (six) ASCII sticks containing printable characters. | |
97 | Smallest base which is not perfect odd power (where generalized Wagstaff numbers can be factored algebraically) for which no generalized Wagstaff primes are known. | |
100 | Centesimal | As 100=102, these are two decimal digits. |
121 | Number expressible with two undecimal digits. | |
125 | Number expressible with three quinary digits. | |
128 | Using as 128=27.[ clarification needed ] | |
144 | Number expressible with two duodecimal digits. | |
169 | Number expressible with two tridecimal digits. | |
185 | Smallest base which is not a perfect power (where generalized repunits can be factored algebraically) for which no generalized repunit primes are known. | |
196 | Number expressible with two tetradecimal digits. | |
210 | Smallest base such that all fractions 1/2 to 1/10 terminate. | |
225 | Number expressible with two pentadecimal digits. | |
256 | Number expressible with eight binary digits. | |
360 | Degrees of angle. |
Base | Name | Usage |
---|---|---|
1 | Unary (Bijective base‑1) | Tally marks, Counting. Unary numbering is used as part of some data compression algorithms such as Golomb coding. It also forms the basis for the Peano axioms for formalizing arithmetic within mathematical logic. A form of unary notation called Church encoding is used to represent numbers within lambda calculus. Some email spam filters tag messages with a number of asterisks in an e-mail header such as X-Spam-Bar or X-SPAM-LEVEL. The larger the number, the more likely the email is considered spam. |
10 | Bijective base-10 | To avoid zero |
26 | Bijective base-26 | Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages. [66] |
Base | Name | Usage |
---|---|---|
2 | Balanced binary (Non-adjacent form) | |
3 | Balanced ternary | Ternary computers |
4 | Balanced quaternary | |
5 | Balanced quinary | |
6 | Balanced senary | |
7 | Balanced septenary | |
8 | Balanced octal | |
9 | Balanced nonary | |
10 | Balanced decimal | John Colson Augustin Cauchy |
11 | Balanced undecimal | |
12 | Balanced duodecimal |
Base | Name | Usage |
---|---|---|
2i | Quater-imaginary base | related to base −4 and base 16 |
Base | related to base −2 and base 4 | |
Base | related to base 2 | |
Base | related to base 8 | |
Base | related to base 2 | |
−1 ± i | Twindragon base | Twindragon fractal shape, related to base −4 and base 16 |
1 ± i | Negatwindragon base | related to base −4 and base 16 |
Base | Name | Usage |
---|---|---|
Base | a rational non-integer base | |
Base | related to duodecimal | |
Base | related to decimal | |
Base | related to base 2 | |
Base | related to base 3 | |
Base | ||
Base | ||
Base | usage in 12-tone equal temperament musical system | |
Base | ||
Base | a negative rational non-integer base | |
Base | a negative non-integer base, related to base 2 | |
Base | related to decimal | |
Base | related to duodecimal | |
φ | Golden ratio base | early Beta encoder [67] |
ρ | Plastic number base | |
ψ | Supergolden ratio base | |
Silver ratio base | ||
e | Base | best radix economy [ citation needed ] |
π | Base | |
e π | Base | |
Base |
Base | Name | Usage |
---|---|---|
2 | Dyadic number | |
3 | Triadic number | |
4 | Tetradic number | the same as dyadic number |
5 | Pentadic number | |
6 | Hexadic number | not a field |
7 | Heptadic number | |
8 | Octadic number | the same as dyadic number |
9 | Enneadic number | the same as triadic number |
10 | Decadic number | not a field |
11 | Hendecadic number | |
12 | Dodecadic number | not a field |
All known numeral systems developed before the Babylonian numerals are non-positional, [68] as are many developed later, such as the Roman numerals. The French Cistercian monks created their own numeral system.
D, or d, is the fourth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is dee, plural dees.
The Coptic script is the script used for writing the Coptic language, the most recent development of Egyptian. The repertoire of glyphs is based on the uncial Greek alphabet, augmented by letters borrowed from the Egyptian Demotic. It was the first alphabetic script used for the Egyptian language. There are several Coptic alphabets, as the script varies greatly among the various dialects and eras of the Coptic language.
A vigesimal or base-20 (base-score) numeral system is based on twenty. Vigesimal is derived from the Latin adjective vicesimus, meaning 'twentieth'.
Michael Everson is an American and Irish linguist, script encoder, typesetter, type designer and publisher. He runs a publishing company called Evertype, through which he has published over one hundred books since 2006.
L, or l, is the twelfth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is el, plural els.
The Tamil language has number words and dedicated symbols for them in the Tamil script.
In Unicode, the Sumero-Akkadian Cuneiform script is covered in three blocks in the Supplementary Multilingual Plane (SMP):
A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.
This is a list of rare glyph variants of Cyrillic letter O. They were proposed for inclusion into Unicode in 2007 and incorporated as in Unicode 5.1.
KPS 9566 is a North Korean standard specifying a character encoding for the Chosŏn'gŭl (Hangul) writing system used for the Korean language. The edition of 1997 specified an ISO 2022-compliant 94×94 two-byte coded character set. Subsequent editions have added additional encoded characters outside of the 94×94 plane, in a manner comparable to UHC or GBK.
The Kaktovik numerals or Kaktovik Iñupiaq numerals are a base-20 system of numerical digits created by Alaskan Iñupiat. They are visually iconic, with shapes that indicate the number being represented.
Inscriptional Parthian was a script used to write the Parthian language, the majority of the text found were from clay fragments. This script was used from the 2nd century CE to the 5th century CE or in the Parthian Empire to the early Sasanian Empire. During the Sasanian Empire it was mostly used for official texts.
Psalter Pahlavi is a cursive abjad that was used for writing Middle Persian on paper; it is thus described as one of the Pahlavi scripts. It was written right to left, usually with spaces between words.
In Unicode, the Sumero-Akkadian Cuneiform script is covered in three blocks in the Supplementary Multilingual Plane (SMP):
Phaistos Disc is a Unicode block containing the characters found on the undeciphered Phaistos Disc artefact.
Tally marks, also called hash marks, are a form of numeral used for counting. They can be thought of as a unary numeral system.
Medefaidrin (Medefidrin), or Obɛri Ɔkaimɛ, is a constructed language and script created as a Christian sacred language by an Ibibio congregation in 1930s Nigeria. It has its roots in glossolalia.
... unodecimal, duodecimal, tridecimal, quadrodecimal, pentadecimal, heptadecimal, octodecimal, nona decimal, vigesimal and further are discussed...
A student of the American Indian languages is naturally led to investigate the wide-spread use of the quinary-vigesimal system of counting which he meets in the whole territory from Alaska along the Pacific Coast to the Orinoco and the Amazon.
Quinary-vigesimal. This is most frequent. The Greenland Eskimo says 'other hand two' for 7, 'first foot two' for 12, 'other foot two' for 17, and similar combinations to 20, 'man ended.' The Unalit is also quinary to twenty, which is 'man completed.' ...
There's even a hexavigesimal digital code—our own twenty-six symbol variant of the ancient Latin alphabet, which the Romans derived in turn from the quadravigesimal version used by the ancient Greeks.
[…] 2) the hexadecimal output of the hash function is converted to hexavigesimal (base-26); 3) letters in the hexavigesimal number are capitalized, while all numerals are left unchanged; 4) the order of the characters is reversed so that the hexavigesimal digits appear […]
This article proposes the Unique Number Mapping as an identification scheme, that could replace the E.164 numbers, could be used both with PSTN and VoIP terminals and makes use of the elements of the ENUM technology and the hexatrigesimal number system. […] To have the shortest IDs, we should use the greatest possible number system, which is the hexatrigesimal. Here the place values correspond to powers of 36...
Concord Numbers used in the categorisation of Luganda words encoded using either Hexatrigesimal or Duotrigesimal, standard positional numbering systems. […] We propose Hexatrigesimal system to capture numeric information exceeding 10 for adaptation purposes for other Bantu languages or other agglutinative languages.
Thanks to Satoshi Nakamoto for inventing the Base58 encoding format