Wagstaff prime

Last updated
Wagstaff prime
Named after Samuel S. Wagstaff, Jr.
Publication year1989 [1]
Author of publication Bateman, P. T., Selfridge, J. L., Wagstaff Jr., S. S.
No. of known terms44
First terms 3, 11, 43, 683
Largest known term(2138937+1)/3
OEIS index
  • A000979
  • Wagstaff primes: primes of form (2^p + 1)/3

In number theory, a Wagstaff prime is a prime number of the form

Contents

where p is an odd prime. Wagstaff primes are named after the mathematician Samuel S. Wagstaff Jr.; the prime pages credit François Morain for naming them in a lecture at the Eurocrypt 1990 conference. Wagstaff primes appear in the New Mersenne conjecture and have applications in cryptography.

Examples

The first three Wagstaff primes are 3, 11, and 43 because

Known Wagstaff primes

The first few Wagstaff primes are:

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, … (sequence A000979 in the OEIS )

As of October 2023, known exponents which produce Wagstaff primes or probable primes are:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937 [2] (all known Wagstaff primes)
141079, 267017, 269987, 374321, 986191, 4031399, …, 13347311, 13372531, 15135397 (Wagstaff probable primes) (sequence A000978 in the OEIS )

In February 2010, Tony Reix discovered the Wagstaff probable prime:

which has 1,213,572 digits and was the 3rd biggest probable prime ever found at this date. [3]

In September 2013, Ryan Propper announced the discovery of two additional Wagstaff probable primes: [4]

and

Each is a probable prime with slightly more than 4 million decimal digits. It is not currently known whether there are any exponents between 4031399 and 13347311 that produce Wagstaff probable primes.

In June 2021, Ryan Propper announced the discovery of the Wagstaff probable prime: [5]

which is a probable prime with slightly more than 4.5 million decimal digits.

Primality testing

Primality has been proven or disproven for the values of p up to 138937. Those with p > 138937 are probable primes as of October 2023. The primality proof for p = 42737 was performed by François Morain in 2007 with a distributed ECPP implementation running on several networks of workstations for 743 GHz-days on an Opteron processor. [6] It was the third largest primality proof by ECPP from its discovery until March 2009. [7]

Generalizations

It is natural to consider [8] more generally numbers of the form

where the base . Since for odd we have

these numbers are called "Wagstaff numbers base ", and sometimes considered [9] a case of the repunit numbers with negative base .

For some specific values of , all (with a possible exception for very small ) are composite because of an "algebraic" factorization. Specifically, if has the form of a perfect power with odd exponent (like 8, 27, 32, 64, 125, 128, 216, 243, 343, 512, 729, 1000, etc. (sequence A070265 in the OEIS )), then the fact that , with odd, is divisible by shows that is divisible by in these special cases. Another case is , with k a positive integer (like 4, 64, 324, 1024, 2500, 5184, etc. (sequence A141046 in the OEIS )), where we have the aurifeuillean factorization.

However, when does not admit an algebraic factorization, it is conjectured that an infinite number of values make prime, notice all are odd primes.

For , the primes themselves have the following appearance: 9091, 909091, 909090909090909091, 909090909090909090909090909091, … (sequence A097209 in the OEIS ), and these ns are: 5, 7, 19, 31, 53, 67, 293, 641, 2137, 3011, 268207, ... (sequence A001562 in the OEIS ).

See Repunit#Repunit primes for the list of the generalized Wagstaff primes base . (Generalized Wagstaff primes base are generalized repunit primes base with odd )

The least primes p such that is prime are (starts with n = 2, 0 if no such p exists)

3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, ... (sequence A084742 in the OEIS )

The least bases b such that is prime are (starts with n = 2)

2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, ... (sequence A103795 in the OEIS )

Related Research Articles

In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p.

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. The number 2p + 1 associated with a Sophie Germain prime is called a safe prime. For example, 11 is a Sophie Germain prime and 2 × 11 + 1 = 23 is its associated safe prime. Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1. In this case, is unsolvable. Germain’s proof, however, remained unfinished. Through her attempts to solve Fermat's Last Theorem, Germain developed a result now known as Germain's Theorem which states that if p is an odd prime and 2p + 1 is also prime, then p must divide x, y, or z. Otherwise, . This case where p does not divide x, y, or z is called the first case. Sophie Germain’s work was the most progress achieved on Fermat’s last theorem at that time. Later work by Kummer and others always divided the problem into first and second cases. Sophie Germain primes and safe primes have applications in public key cryptography and primality testing. It has been conjectured that there are infinitely many Sophie Germain primes, but this remains unproven.

In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form

In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930.

23 (twenty-three) is the natural number following 22 and preceding 24.

63 (sixty-three) is the natural number following 62 and preceding 64.

A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.

In mathematics, a double Mersenne number is a Mersenne number of the form

John Lewis Selfridge, was an American mathematician who contributed to the fields of analytic number theory, computational number theory, and combinatorics.

Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.

A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them "pseudoprimes".

In number theory, a Pierpont prime is a prime number of the form

271 is the natural number after 270 and before 272.

In mathematics, the Mersenne conjectures concern the characterization of a kind of prime numbers called Mersenne primes, meaning prime numbers that are a power of two minus one.

In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.

References

  1. Bateman, P. T.; Selfridge, J. L.; Wagstaff, Jr., S. S. (1989). "The New Mersenne Conjecture". American Mathematical Monthly. 96: 125–128. doi:10.2307/2323195. JSTOR   2323195.
  2. "The Top Twenty: Wagstaff".
  3. "Henri & Renaud Lifchitz's PRP Top records". www.primenumbers.net. Retrieved 2021-11-13.
  4. New Wagstaff PRP exponents, mersenneforum.org
  5. Announcing a new Wagstaff PRP, mersenneforum.org
  6. Comment by François Morain, The Prime Database: (242737 + 1)/3 at The Prime Pages.
  7. Caldwell, Chris, "The Top Twenty: Elliptic Curve Primality Proof", The Prime Pages
  8. Dubner, H. and Granlund, T.: Primes of the Form (bn + 1)/(b + 1), Journal of Integer Sequences, Vol. 3 (2000)
  9. Repunit, Wolfram MathWorld (Eric W. Weisstein)