In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.
Fermat's little theorem states that if p is prime and a is coprime to p, then ap−1 − 1 is divisible by p. For a positive integer a, if a composite integer x divides ax−1 − 1, then x is called a Fermat pseudoprime to base a. [1] : Def. 3.32 In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. [2] The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis.
The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.
Pseudoprimes to base 2 are sometimes called Sarrus numbers, after P. F. Sarrus who discovered that 341 has this property, Poulet numbers, after P. Poulet who made a table of such numbers, or Fermatians(sequence A001567 in the OEIS ).
A Fermat pseudoprime is often called a pseudoprime, with the modifier Fermat being understood.
An integer x that is a Fermat pseudoprime for all values of a that are coprime to x is called a Carmichael number. [2] [1] : Def. 3.34
There are infinitely many pseudoprimes to any given base a > 1. In 1904, Cipolla showed how to produce an infinite number of pseudoprimes to base a > 1: let A = (ap - 1)/(a - 1) and let B = (ap + 1)/(a + 1), where p is a prime number that does not divide a(a2 - 1). Then n = AB is composite, and is a pseudoprime to base a. [3] [4] For example, if a = 2 and p = 5, then A = 31, B = 11, and n = 341 is a pseudoprime to base 2.
In fact, there are infinitely many strong pseudoprimes to any base greater than 1 (see Theorem 1 of [5] ) and infinitely many Carmichael numbers, [6] but they are comparatively rare. There are three pseudoprimes to base 2 below 1000, 245 below one million, and 21853 less than 25·109. There are 4842 strong pseudoprimes base 2 and 2163 Carmichael numbers below this limit (see Table 1 of [5] ).
Starting at 17·257, the product of consecutive Fermat numbers is a base-2 pseudoprime, and so are all Fermat composites and Mersenne composites.
The probability of a composite number n passing the Fermat test approaches zero for . Specifically, Kim and Pomerance showed the following: The probability that a random odd number n ≤ x is a Fermat pseudoprime to a random base is less than 2.77·10-8 for x= 10100, and is at most (log x)-197<10-10,000 for x≥10100,000. [7]
The factorizations of the 60 Poulet numbers up to 60787, including 13 Carmichael numbers (in bold), are in the following table.
(sequence A001567 in the OEIS )
|
|
|
|
A Poulet number all of whose divisors d divide 2d − 2 is called a super-Poulet number. There are infinitely many Poulet numbers which are not super-Poulet Numbers. [8]
The smallest pseudoprime for each base a ≤ 200 is given in the following table; the colors mark the number of prime factors. Unlike in the definition at the start of the article, pseudoprimes below a are excluded in the table. (For that to allow pseudoprimes below a, see OEIS: A090086 )
(sequence A007535 in the OEIS )
a | smallest p-p | a | smallest p-p | a | smallest p-p | a | smallest p-p |
---|---|---|---|---|---|---|---|
1 | 4 = 2² | 51 | 65 = 5 · 13 | 101 | 175 = 5² · 7 | 151 | 175 = 5² · 7 |
2 | 341 = 11 · 31 | 52 | 85 = 5 · 17 | 102 | 133 = 7 · 19 | 152 | 153 = 3² · 17 |
3 | 91 = 7 · 13 | 53 | 65 = 5 · 13 | 103 | 133 = 7 · 19 | 153 | 209 = 11 · 19 |
4 | 15 = 3 · 5 | 54 | 55 = 5 · 11 | 104 | 105 = 3 · 5 · 7 | 154 | 155 = 5 · 31 |
5 | 124 = 2² · 31 | 55 | 63 = 3² · 7 | 105 | 451 = 11 · 41 | 155 | 231 = 3 · 7 · 11 |
6 | 35 = 5 · 7 | 56 | 57 = 3 · 19 | 106 | 133 = 7 · 19 | 156 | 217 = 7 · 31 |
7 | 25 = 5² | 57 | 65 = 5 · 13 | 107 | 133 = 7 · 19 | 157 | 186 = 2 · 3 · 31 |
8 | 9 = 3² | 58 | 133 = 7 · 19 | 108 | 341 = 11 · 31 | 158 | 159 = 3 · 53 |
9 | 28 = 2² · 7 | 59 | 87 = 3 · 29 | 109 | 117 = 3² · 13 | 159 | 247 = 13 · 19 |
10 | 33 = 3 · 11 | 60 | 341 = 11 · 31 | 110 | 111 = 3 · 37 | 160 | 161 = 7 · 23 |
11 | 15 = 3 · 5 | 61 | 91 = 7 · 13 | 111 | 190 = 2 · 5 · 19 | 161 | 190 = 2 · 5 · 19 |
12 | 65 = 5 · 13 | 62 | 63 = 3² · 7 | 112 | 121 = 11² | 162 | 481 = 13 · 37 |
13 | 21 = 3 · 7 | 63 | 341 = 11 · 31 | 113 | 133 = 7 · 19 | 163 | 186 = 2 · 3 · 31 |
14 | 15 = 3 · 5 | 64 | 65 = 5 · 13 | 114 | 115 = 5 · 23 | 164 | 165 = 3 · 5 · 11 |
15 | 341 = 11 · 31 | 65 | 112 = 2⁴ · 7 | 115 | 133 = 7 · 19 | 165 | 172 = 2² · 43 |
16 | 51 = 3 · 17 | 66 | 91 = 7 · 13 | 116 | 117 = 3² · 13 | 166 | 301 = 7 · 43 |
17 | 45 = 3² · 5 | 67 | 85 = 5 · 17 | 117 | 145 = 5 · 29 | 167 | 231 = 3 · 7 · 11 |
18 | 25 = 5² | 68 | 69 = 3 · 23 | 118 | 119 = 7 · 17 | 168 | 169 = 13² |
19 | 45 = 3² · 5 | 69 | 85 = 5 · 17 | 119 | 177 = 3 · 59 | 169 | 231 = 3 · 7 · 11 |
20 | 21 = 3 · 7 | 70 | 169 = 13² | 120 | 121 = 11² | 170 | 171 = 3² · 19 |
21 | 55 = 5 · 11 | 71 | 105 = 3 · 5 · 7 | 121 | 133 = 7 · 19 | 171 | 215 = 5 · 43 |
22 | 69 = 3 · 23 | 72 | 85 = 5 · 17 | 122 | 123 = 3 · 41 | 172 | 247 = 13 · 19 |
23 | 33 = 3 · 11 | 73 | 111 = 3 · 37 | 123 | 217 = 7 · 31 | 173 | 205 = 5 · 41 |
24 | 25 = 5² | 74 | 75 = 3 · 5² | 124 | 125 = 5³ | 174 | 175 = 5² · 7 |
25 | 28 = 2² · 7 | 75 | 91 = 7 · 13 | 125 | 133 = 7 · 19 | 175 | 319 = 11 · 19 |
26 | 27 = 3³ | 76 | 77 = 7 · 11 | 126 | 247 = 13 · 19 | 176 | 177 = 3 · 59 |
27 | 65 = 5 · 13 | 77 | 247 = 13 · 19 | 127 | 153 = 3² · 17 | 177 | 196 = 2² · 7² |
28 | 45 = 3² · 5 | 78 | 341 = 11 · 31 | 128 | 129 = 3 · 43 | 178 | 247 = 13 · 19 |
29 | 35 = 5 · 7 | 79 | 91 = 7 · 13 | 129 | 217 = 7 · 31 | 179 | 185 = 5 · 37 |
30 | 49 = 7² | 80 | 81 = 3⁴ | 130 | 217 = 7 · 31 | 180 | 217 = 7 · 31 |
31 | 49 = 7² | 81 | 85 = 5 · 17 | 131 | 143 = 11 · 13 | 181 | 195 = 3 · 5 · 13 |
32 | 33 = 3 · 11 | 82 | 91 = 7 · 13 | 132 | 133 = 7 · 19 | 182 | 183 = 3 · 61 |
33 | 85 = 5 · 17 | 83 | 105 = 3 · 5 · 7 | 133 | 145 = 5 · 29 | 183 | 221 = 13 · 17 |
34 | 35 = 5 · 7 | 84 | 85 = 5 · 17 | 134 | 135 = 3³ · 5 | 184 | 185 = 5 · 37 |
35 | 51 = 3 · 17 | 85 | 129 = 3 · 43 | 135 | 221 = 13 · 17 | 185 | 217 = 7 · 31 |
36 | 91 = 7 · 13 | 86 | 87 = 3 · 29 | 136 | 265 = 5 · 53 | 186 | 187 = 11 · 17 |
37 | 45 = 3² · 5 | 87 | 91 = 7 · 13 | 137 | 148 = 2² · 37 | 187 | 217 = 7 · 31 |
38 | 39 = 3 · 13 | 88 | 91 = 7 · 13 | 138 | 259 = 7 · 37 | 188 | 189 = 3³ · 7 |
39 | 95 = 5 · 19 | 89 | 99 = 3² · 11 | 139 | 161 = 7 · 23 | 189 | 235 = 5 · 47 |
40 | 91 = 7 · 13 | 90 | 91 = 7 · 13 | 140 | 141 = 3 · 47 | 190 | 231 = 3 · 7 · 11 |
41 | 105 = 3 · 5 · 7 | 91 | 115 = 5 · 23 | 141 | 355 = 5 · 71 | 191 | 217 = 7 · 31 |
42 | 205 = 5 · 41 | 92 | 93 = 3 · 31 | 142 | 143 = 11 · 13 | 192 | 217 = 7 · 31 |
43 | 77 = 7 · 11 | 93 | 301 = 7 · 43 | 143 | 213 = 3 · 71 | 193 | 276 = 2² · 3 · 23 |
44 | 45 = 3² · 5 | 94 | 95 = 5 · 19 | 144 | 145 = 5 · 29 | 194 | 195 = 3 · 5 · 13 |
45 | 76 = 2² · 19 | 95 | 141 = 3 · 47 | 145 | 153 = 3² · 17 | 195 | 259 = 7 · 37 |
46 | 133 = 7 · 19 | 96 | 133 = 7 · 19 | 146 | 147 = 3 · 7² | 196 | 205 = 5 · 41 |
47 | 65 = 5 · 13 | 97 | 105 = 3 · 5 · 7 | 147 | 169 = 13² | 197 | 231 = 3 · 7 · 11 |
48 | 49 = 7² | 98 | 99 = 3² · 11 | 148 | 231 = 3 · 7 · 11 | 198 | 247 = 13 · 19 |
49 | 66 = 2 · 3 · 11 | 99 | 145 = 5 · 29 | 149 | 175 = 5² · 7 | 199 | 225 = 3² · 5² |
50 | 51 = 3 · 17 | 100 | 153 = 3² · 17 | 150 | 169 = 13² | 200 | 201 = 3 · 67 |
n | First few Fermat pseudoprimes in base n | OEIS sequence |
1 | 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, ... (All composites) | A002808 |
2 | 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... | A001567 |
3 | 91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... | A005935 |
4 | 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... | A020136 |
5 | 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... | A005936 |
6 | 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881, ... | A005937 |
7 | 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321, ... | A005938 |
8 | 9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861, 949, 1001, 1105, 1281, 1365, 1387, 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641, 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 9265, 9709, 9773, 9881, 9945, ... | A020137 |
9 | 4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911, ... | A020138 |
10 | 9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911, ... | A005939 |
11 | 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730, ... | A020139 |
12 | 65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891, 2041, 2233, 2465, 2701, 2821, 2983, 3367, 3553, 5005, 5365, 5551, 5785, 6061, 6305, 6601, 8911, 9073, ... | A020140 |
13 | 4, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465, 2806, 3605, 5028, 5149, 5185, 5565, 6601, 7107, 8841, 8911, 9577, 9637, ... | A020141 |
14 | 15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, ... | A020142 |
15 | 14, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7471, 8701, 8911, 9073, ... | A020143 |
16 | 15, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285, 1387, 1581, 1687, 1695, 1729, 1891, 1905, 2047, 2071, 2091, 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9919, ... | A020144 |
17 | 4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911, ... | A020145 |
18 | 25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387, 1649, 1729, 1921, 2149, 2465, 2701, 2821, 2825, 2977, 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061, ... | A020146 |
19 | 6, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661, 1849, 1891, 2353, 2465, 2701, 2821, 2955, 3201, 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997, ... | A020147 |
20 | 21, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501, 2761, 2821, 2947, 3059, 3201, 4047, 5271, 5461, 5473, 5713, 5833, 6601, 6817, 7999, 8421, 8911, ... | A020148 |
21 | 4, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185, 5473, 5995, 6541, 7363, 8695, 8965, 9061, ... | A020149 |
22 | 21, 69, 91, 105, 161, 169, 345, 483, 485, 645, 805, 1105, 1183, 1247, 1261, 1541, 1649, 1729, 1891, 2037, 2041, 2047, 2413, 2465, 2737, 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 6693, 7081, 7107, 7267, 7665, 8119, 8365, 8421, 8911, 9453, ... | A020150 |
23 | 22, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027, 1045, 1065, 1105, 1183, 1271, 1729, 1738, 1749, 2059, 2321, 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 8365, 8651, 8745, 8911, 8965, 9805, ... | A020151 |
24 | 25, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425, 2465, 2701, 2737, 2821, 2885, 3781, 4207, 4537, 6601, 6931, 6943, 7081, 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809, ... | A020152 |
25 | 4, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 804, 868, 946, 1128, 1288, 1541, 1729, 1891, 2047, 2701, 2806, 2821, 2911, 2926, 3052, 3126, 3367, 3592, 3976, 4069, 4123, 4207, 4564, 4636, 4686, 5321, 5461, 5551, 5611, 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9881, 9976, ... | A020153 |
26 | 9, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703, 775, 925, 1035, 1065, 1147, 2465, 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525, 6601, 6697, 8029, 8695, 8911, 9073, ... | A020154 |
27 | 26, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541, 1649, 1729, 1891, 2071, 2465, 2665, 2701, 2821, 2981, 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321, 8401, 8911, 9139, 9709, 9809, 9841, 9881, 9919, ... | A020155 |
28 | 9, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413, 2465, 2871, 3201, 3277, 4553, 4699, 5149, 5181, 5365, 7065, 8149, 8321, 8401, 9841, ... | A020156 |
29 | 4, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 1876, 1897, 2105, 2257, 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097, 6601, 7161, 7294, 8321, 8401, 8421, 8841, 8911, ... | A020157 |
30 | 49, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273, 1519, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 3283, 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8401, 8911, 9881, ... | A020158 |
For more information (base 31 to 100), see OEIS: A020159 to OEIS: A020228 , and for all bases up to 150, see table of Fermat pseudoprimes (text in German), this page does not define n is a pseudoprime to a base congruent to 1 or -1 (mod n)
If composite is even, then is a Fermat pseudoprime to the trivial base . If composite is odd, then is a Fermat pseudoprime to the trivial bases .
For any composite , the number of distinct bases modulo , for which is a Fermat pseudoprime base , is [9] : Thm. 1, p. 1392
where are the distinct prime factors of . This includes the trivial bases.
For example, for , this product is . For , the smallest such nontrivial base is .
Every odd composite is a Fermat pseudoprime to at least two nontrivial bases modulo unless is a power of 3. [9] : Cor. 1, p. 1393
For composite n < 200, the following is a table of all bases b < n which n is a Fermat pseudoprime. If a composite number n is not in the table (or n is in the sequence A209211), then n is a pseudoprime only to the trivial base 1 modulo n.
n | bases b to which n is a Fermat pseudoprime (< n) | number of the bases of b (< n) (sequence A063994 in the OEIS ) |
9 | 1, 8 | 2 |
15 | 1, 4, 11, 14 | 4 |
21 | 1, 8, 13, 20 | 4 |
25 | 1, 7, 18, 24 | 4 |
27 | 1, 26 | 2 |
28 | 1, 9, 25 | 3 |
33 | 1, 10, 23, 32 | 4 |
35 | 1, 6, 29, 34 | 4 |
39 | 1, 14, 25, 38 | 4 |
45 | 1, 8, 17, 19, 26, 28, 37, 44 | 8 |
49 | 1, 18, 19, 30, 31, 48 | 6 |
51 | 1, 16, 35, 50 | 4 |
52 | 1, 9, 29 | 3 |
55 | 1, 21, 34, 54 | 4 |
57 | 1, 20, 37, 56 | 4 |
63 | 1, 8, 55, 62 | 4 |
65 | 1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64 | 16 |
66 | 1, 25, 31, 37, 49 | 5 |
69 | 1, 22, 47, 68 | 4 |
70 | 1, 11, 51 | 3 |
75 | 1, 26, 49, 74 | 4 |
76 | 1, 45, 49 | 3 |
77 | 1, 34, 43, 76 | 4 |
81 | 1, 80 | 2 |
85 | 1, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 84 | 16 |
87 | 1, 28, 59, 86 | 4 |
91 | 1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90 | 36 |
93 | 1, 32, 61, 92 | 4 |
95 | 1, 39, 56, 94 | 4 |
99 | 1, 10, 89, 98 | 4 |
105 | 1, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 104 | 16 |
111 | 1, 38, 73, 110 | 4 |
112 | 1, 65, 81 | 3 |
115 | 1, 24, 91, 114 | 4 |
117 | 1, 8, 44, 53, 64, 73, 109, 116 | 8 |
119 | 1, 50, 69, 118 | 4 |
121 | 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 | 10 |
123 | 1, 40, 83, 122 | 4 |
124 | 1, 5, 25 | 3 |
125 | 1, 57, 68, 124 | 4 |
129 | 1, 44, 85, 128 | 4 |
130 | 1, 61, 81 | 3 |
133 | 1, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68, 69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132 | 36 |
135 | 1, 26, 109, 134 | 4 |
141 | 1, 46, 95, 140 | 4 |
143 | 1, 12, 131, 142 | 4 |
145 | 1, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 144 | 16 |
147 | 1, 50, 97, 146 | 4 |
148 | 1, 121, 137 | 3 |
153 | 1, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 152 | 16 |
154 | 1, 23, 67 | 3 |
155 | 1, 61, 94, 154 | 4 |
159 | 1, 52, 107, 158 | 4 |
161 | 1, 22, 139, 160 | 4 |
165 | 1, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 164 | 16 |
169 | 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168 | 12 |
171 | 1, 37, 134, 170 | 4 |
172 | 1, 49, 165 | 3 |
175 | 1, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 174 | 12 |
176 | 1, 49, 81, 97, 113 | 5 |
177 | 1, 58, 119, 176 | 4 |
183 | 1, 62, 121, 182 | 4 |
185 | 1, 6, 31, 36, 38, 43, 68, 73, 112, 117, 142, 147, 149, 154, 179, 184 | 16 |
186 | 1, 97, 109, 157, 163 | 5 |
187 | 1, 67, 120, 186 | 4 |
189 | 1, 55, 134, 188 | 4 |
190 | 1, 11, 61, 81, 101, 111, 121, 131, 161 | 9 |
195 | 1, 14, 64, 79, 116, 131, 181, 194 | 8 |
196 | 1, 165, 177 | 3 |
For more information (n = 201 to 5000), see, [10] this page does not define n is a pseudoprime to a base congruent to 1 or -1 (mod n). When p is a prime, p2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 10932 = 1194649 is a Fermat pseudoprime to base 2, and 112 = 121 is a Fermat pseudoprime to base 3.
The number of the values of b for n are (For n prime, the number of the values of b must be n - 1, since all b satisfy the Fermat little theorem)
The least base b > 1 which n is a pseudoprime to base b (or prime number) are
The number of the values of b for n must divides (n), or A000010(n) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, ... (The quotient can be any natural number, and the quotient = 1 if and only if n is a prime or a Carmichael number (561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, ... A002997), the quotient = 2 if and only if n is in the sequence: 4, 6, 15, 91, 703, 1891, 2701, 11305, 12403, 13981, 18721, ... A191311)
The least number with n values of b are (or 0 if no such number exists)
A composite number n which satisfy that is called weak pseudoprime to base b. A pseudoprime to base a (under the usual definition) satisfies this condition. Conversely, a weak pseudoprime that is coprime with the base is a pseudoprime in the usual sense, otherwise this may or may not be the case. [11] The least weak pseudoprime to base b = 1, 2, ... are:
All terms are less than or equal to the smallest Carmichael number, 561. Except for 561, only semiprimes can occur in the above sequence, but not all semiprimes less than 561 occur, a semiprime pq (p ≤ q) less than 561 occurs in the above sequences if and only if p − 1 divides q − 1. (see OEIS: A108574 ) Besides, the smallest pseudoprime to base n (also not necessary exceeding n) ( OEIS: A090086 ) is also usually semiprime, the first counterexample is A090086(648) = 385 = 5 × 7 × 11.
If we require n > b, they are (for b = 1, 2, ...)
Carmichael numbers are weak pseudoprimes to all bases.
The smallest even weak pseudoprime in base 2 is 161038 (see OEIS: A006935 ).
Another approach is to use more refined notions of pseudoprimality, e.g. strong pseudoprimes or Euler–Jacobi pseudoprimes, for which there are no analogues of Carmichael numbers. This leads to probabilistic algorithms such as the Solovay–Strassen primality test, the Baillie–PSW primality test, and the Miller–Rabin primality test, which produce what are known as industrial-grade primes. Industrial-grade primes are integers for which primality has not been "certified" (i.e. rigorously proven), but have undergone a test such as the Miller–Rabin test which has nonzero, but arbitrarily low, probability of failure.
The rarity of such pseudoprimes has important practical implications. For example, public-key cryptography algorithms such as RSA require the ability to quickly find large primes. The usual algorithm to generate prime numbers is to generate random odd numbers and test them for primality. However, deterministic primality tests are slow. If the user is willing to tolerate an arbitrarily small chance that the number found is not a prime number but a pseudoprime, it is possible to use the much faster and simpler Fermat primality test.
In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:
In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as
In mathematics, a Fermat number, named after Pierre de Fermat, the first known to have studied them, is a positive integer of the form: where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ....
In number theory, an odd integer n is called an Euler–Jacobi probable prime to base a, if a and n are coprime, and
The Fermat primality test is a probabilistic test to determine whether a number is a probable prime.
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite, the condition is generally chosen in order to make such exceptions rare.
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy. Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called compositeness tests instead of primality tests.
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test.
In arithmetic, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and
55 (fifty-five) is the natural number following 54 and preceding 56.
300 is the natural number following 299 and preceding 301.
The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test is essentially an Euler–Jacobi probable prime test.
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.
A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them "pseudoprimes".
In modular arithmetic, the integers coprime to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n. Here units refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to n.
In number theory, a Frobenius pseudoprime is a pseudoprime, whose definition was inspired by the quadratic Frobenius test described by Jon Grantham in a 1998 preprint and published in 2000. Frobenius pseudoprimes can be defined with respect to polynomials of degree at least 2, but they have been most extensively studied in the case of quadratic polynomials.
In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test. The test is named after a French mathematician, Théophile Pépin.
The Baillie–PSW primality test is a probabilistic or possibly deterministic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance, John Selfridge, and Samuel Wagstaff.
A pseudoprime is a probable prime that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy.
In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x3 = x + 1. The Perrin numbers bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence.