In number theory, the Padovan sequence is the sequence of integers P(n) defined [1] by the initial values
and the recurrence relation
The first few values of P(n) are
The Padovan sequence is named after Richard Padovan who attributed its discovery to Dutch architect Hans van der Laan in his 1994 essay Dom. Hans van der Laan : Modern Primitive. [2] The sequence was described by Ian Stewart in his Scientific American column Mathematical Recreations in June 1996. [3] He also writes about it in one of his books, "Math Hysteria: Fun Games With Mathematics". [4]
The above definition is the one given by Ian Stewart and by MathWorld. Other sources may start the sequence at a different place, in which case some of the identities in this article must be adjusted with appropriate offsets.
In the spiral, each triangle shares a side with two others giving a visual proof that the Padovan sequence also satisfies the recurrence relation
Starting from this, the defining recurrence and other recurrences as they are discovered, one can create an infinite number of further recurrences by repeatedly replacing by
The Perrin sequence satisfies the same recurrence relations as the Padovan sequence, although it has different initial values.
The Perrin sequence can be obtained from the Padovan sequence by the following formula:
As with any sequence defined by a recurrence relation, Padovan numbers P(m) for m<0 can be defined by rewriting the recurrence relation as
Starting with m = −1 and working backwards, we extend P(m) to negative indices:
P−20 | P−19 | P−18 | P−17 | P−16 | P−15 | P−14 | P−13 | P−12 | P−11 | P−10 | P−9 | P−8 | P−7 | P−6 | P−5 | P−4 | P−3 | P−2 | P−1 | P0 | P1 | P2 |
7 | −7 | 4 | 0 | −3 | 4 | −3 | 1 | 1 | −2 | 2 | −1 | 0 | 1 | −1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
The sum of the first n terms in the Padovan sequence is 2 less than P(n + 5), i.e.
Sums of alternate terms, sums of every third term and sums of every fifth term are also related to other terms in the sequence:
Sums involving products of terms in the Padovan sequence satisfy the following identities:
The Padovan sequence also satisfies the identity
The Padovan sequence is related to sums of binomial coefficients by the following identity:
For example, for k = 12, the values for the pair (m, n) with 2m + n = 12 which give non-zero binomial coefficients are (6, 0), (5, 2) and (4, 4), and:
The Padovan sequence numbers can be written in terms of powers of the roots of the equation [1]
This equation has 3 roots; one real root p (known as the plastic ratio) and two complex conjugate roots q and r. [5] Given these three roots, the Padovan sequence can be expressed by a formula involving p, q and r :
where a, b and c are constants. [1]
Since the absolute values of the complex roots q and r are both less than 1 (and hence p is a Pisot–Vijayaraghavan number), the powers of these roots approach 0 for large n, and tends to zero.
For all , P(n) is the integer closest to . Indeed, is the value of constant a above, while b and c are obtained by replacing p with q and r, respectively.
The ratio of successive terms in the Padovan sequence approaches p, which has a value of approximately 1.324718. This constant bears the same relationship to the Padovan sequence and the Perrin sequence as the golden ratio does to the Fibonacci sequence.
The generating function of the Padovan sequence is
This can be used to prove identities involving products of the Padovan sequence with geometric terms, such as:
In a similar way to the Fibonacci numbers that can be generalized to a set of polynomials called the Fibonacci polynomials, the Padovan sequence numbers can be generalized to yield the Padovan polynomials.
If we define the following simple grammar:
then this Lindenmayer system or L-system produces the following sequence of strings:
and if we count the length of each string, we obtain the Padovan numbers:
Also, if you count the number of As, Bs and Cs in each string, then for the nth string, you have P(n − 5) As, P(n − 3) Bs and P(n − 4) Cs. The count of BB pairs and CC pairs are also Padovan numbers.
A spiral can be formed based on connecting the corners of a set of 3-dimensional cuboids. This is the Padovan cuboid spiral. Successive sides of this spiral have lengths that are the Padovan numbers multiplied by the square root of 2.
Erv Wilson in his paper The Scales of Mt. Meru [6] observed certain diagonals in Pascal's triangle (see diagram) and drew them on paper in 1993. The Padovan numbers were discovered in 1994. Paul Barry (2004) observed that these diagonals generate the Padovan sequence by summing the diagonal numbers. [7]
In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 and some from 1 and 2. Starting from 0 and 1, the sequence begins
In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.
The Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after Eugène Catalan, though they were previously discovered in the 1730s by Minggatu.
In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.
In mathematics, Euler's pentagonal number theorem relates the product and series representations of the Euler function. It states that
In mathematics, the nth Motzkin number is the number of different ways of drawing non-intersecting chords between n points on a circle. The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory.
In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.
In combinatorial mathematics, an alternating permutation of the set {1, 2, 3, ..., n} is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alternating permutations of {1, 2, 3, 4} are:
In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the weak orderings on a set of elements. Weak orderings arrange their elements into a sequence allowing ties, such as might arise as the outcome of a horse race.
In mathematics, the Fibonacci numbers form a sequence defined recursively by:
In mathematics, a Delannoy number counts the paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (m, n), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematician Henri Delannoy.
In mathematics, the Dickson polynomials, denoted Dn(x,α), form a polynomial sequence introduced by L. E. Dickson (1897). They were rediscovered by Brewer (1961) in his study of Brewer sums and have at times, although rarely, been referred to as Brewer polynomials.
In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x3 = x + 1. The Perrin numbers bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence.
In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n people can be connected by person-to-person telephone calls. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values
The metallic mean of a natural number n is a positive real number, denoted here that satisfies the following equivalent characterizations:
In mathematics, an infinite sequence of numbers is called constant-recursive if it satisfies an equation of the form
In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x3 = x2 + 1.