Parasitic number

Last updated

In mathematics, an n-parasitic number (in base 10) is a positive natural number which, when multiplied by n, results in movement of the last digit of its decimal representation to its front. Here n is itself a single-digit positive natural number. In other words, the decimal representation undergoes a right circular shift by one place. For example:

Contents

4 × 128205 = 512820, so 128205 is 4-parasitic.

Most mathematicians do not allow leading zeros to be used, and that is a commonly followed convention.

So even though 4 × 25641 = 102564, the number 25641 is not 4-parasitic.

Derivation

An n-parasitic number can be derived by starting with a digit k (which should be equal to n or greater) in the rightmost (units) place, and working up one digit at a time. For example, for n = 4 and k = 7

4 × 7 = 28
4 × 87 = 348
4 × 487 = 1948
4 × 9487 = 37948
4 × 79487 = 317948
4 × 179487 = 717948.

So 179487 is a 4-parasitic number with units digit 7. Others are 179487179487, 179487179487179487, etc.

Notice that the repeating decimal

Thus

In general, an n-parasitic number can be found as follows. Pick a one digit integer k such that kn, and take the period of the repeating decimal k/(10n−1). This will be where m is the length of the period; i.e. the multiplicative order of 10 modulo (10n − 1).

For another example, if n = 2, then 10n − 1 = 19 and the repeating decimal for 1/19 is

So that for 2/19 is double that:

The length m of this period is 18, the same as the order of 10 modulo 19, so 2 × (1018 − 1)/19 = 105263157894736842.

105263157894736842 × 2 = 210526315789473684, which is the result of moving the last digit of 105263157894736842 to the front.

Additional information

The step-by-step derivation algorithm depicted above is a great core technique but will not find all n-parasitic numbers. It will get stuck in an infinite loop when the derived number equals the derivation source. An example of this occurs when n = 5 and k = 5. The 42-digit n-parasitic number to be derived is 102040816326530612244897959183673469387755. Check the steps in Table One below. The algorithm begins building from right to left until it reaches step 15—then the infinite loop occurs. Lines 16 and 17 are pictured to show that nothing changes. There is a fix for this problem, and when applied, the algorithm will not only find all n-parasitic numbers in base ten, it will find them in base 8 and base 16 as well. Look at line 15 in Table Two. The fix, when this condition is identified and the n-parasitic number has not been found, is simply to not shift the product from the multiplication, but use it as is, and append n (in this case 5) to the end. After 42 steps, the proper parasitic number will be found.

Table One

1. 5 × 5 = 25 − Shift = 55
2. 5 × 55 = 275 − Shift = 755
3. 5 × 755 = 3775 − Shift = 7755
4. 5 × 7755 = 38775 − Shift = 87755
5. 5 × 87755 = 438775 − Shift = 387755
6. 5 × 387755 = 1938775 − Shift = 9387755
7. 5 × 9387755 = 46938775 − Shift = 69387755
8. 5 × 69387755 = 346938775 − Shift = 469387755
9. 5 × 469387755 = 2346938775 − Shift = 3469387755
10. 5 × 3469387755 = 17346938775 − Shift = 73469387755
11. 5 × 73469387755 = 367346938775 − Shift = 673469387755
12. 5 × 673469387755 = 3367346938775 − Shift = 3673469387755
13. 5 × 3673469387755 = 18367346938775 − Shift = 83673469387755
14. 5 × 83673469387755 = 418367346938775 − Shift = 183673469387755
15. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755
16. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755
17. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755

Table Two

1. 5 × 5 = 25 − Shift = 55
2. 5 × 55 = 275 − Shift = 755
3. 5 × 755 = 3775 − Shift = 7755
4. 5 × 7755 = 38775 − Shift = 87755
5. 5 × 87755 = 438775 − Shift = 387755
6. 5 × 387755 = 1938775 − Shift = 9387755
7. 5 × 9387755 = 46938775 − Shift = 69387755
8. 5 × 69387755 = 346938775 − Shift = 469387755
9. 5 × 469387755 = 2346938775 − Shift = 3469387755
10. 5 × 3469387755 = 17346938775 − Shift = 73469387755
11. 5 × 73469387755 = 367346938775 − Shift = 673469387755
12. 5 × 673469387755 = 3367346938775 − Shift = 3673469387755
13. 5 × 3673469387755 = 18367346938775 − Shift = 83673469387755
14. 5 × 83673469387755 = 418367346938775 − Shift = 183673469387755
15. 5 × 183673469387755 = 918367346938775 − Shift = 9183673469387755
16. 5 × 9183673469387755 = 45918367346938775 − Shift = 59183673469387755
17. 5 × 59183673469387755 = 295918367346938775 − Shift = 959183673469387755

There is one more condition to be aware of when working with this algorithm, leading zeros must not be lost. When the shift number is created it may contain a leading zero which is positionally important and must be carried into and through the next step. Calculators and computer math methods will remove leading zeros. Look at Table Three below displaying the derivation steps for n = 4 and k = 4. The Shift number created in step 4, 02564, has a leading zero which is fed into step 5 creating a leading zero product. The resulting Shift is fed into Step 6 which displays a product proving the 4-parasitic number ending in 4 is 102564.

Table Three

1. 4 × 4 = 16 − Shift = 64
2. 4 × 64 = 256 − Shift = 564
3. 4 × 564 = 2256 − Shift = 2564
4. 4 × 2564 = 10256 − Shift = 02564
5. 4 × 02564 = 010256 − Shift = 102564
6. 4 × 102564 = 410256 − Shift = 102564

Smallest n-parasitic numbers

Freeman Dyson in 2005 Freeman Dyson.jpg
Freeman Dyson in 2005

The smallest n-parasitic numbers are also known as Dyson numbers, after a puzzle concerning these numbers posed by Freeman Dyson. [1] [2] [3] They are: (leading zeros are not allowed) (sequence A092697 in the OEIS )

nSmallest n-parasitic numberDigitsPeriod of
1111/9
2105263157894736842182/19
31034482758620689655172413793283/29
410256464/39
514285767/49 = 1/7
61016949152542372881355932203389830508474576271186440677966586/59
71014492753623188405797227/69
81012658227848138/79
910112359550561797752808988764044943820224719449/89

General note

In general, if we relax the rules to allow a leading zero, then there are 9 n-parasitic numbers for each n. Otherwise only if kn then the numbers do not start with zero and hence fit the actual definition.

Other n-parasitic integers can be built by concatenation. For example, since 179487 is a 4-parasitic number, so are 179487179487, 179487179487179487 etc.

Other bases

In duodecimal system, the smallest n-parasitic numbers are: (using inverted two and three for ten and eleven, respectively) (leading zeros are not allowed)

nSmallest n-parasitic numberDigitsPeriod of
1111/Ɛ
210631694842Ɛ2/1Ɛ
3249747/2Ɛ = 1/5
410309236ᘔ882061647195444/3Ɛ
51025355ᘔ9433073ᘔ458409919Ɛ715255/4Ɛ
61020408142854ᘔ997732650ᘔ183469163066/5Ɛ
7101899Ɛ864406Ɛ33ᘔᘔ15423913745949305255Ɛ17357/6Ɛ
8131ᘔ8ᘔ6/7Ɛ = 2/17
9101419648634459Ɛ9384Ɛ26Ɛ533040547216ᘔ1155Ɛ3Ɛ12978ᘔ399459/8Ɛ
(10)14Ɛ36429ᘔ70857921412/9Ɛ = 2/15
Ɛ (11)1011235930336ᘔ53909ᘔ873Ɛ325819Ɛ9975055Ɛ54ᘔ3145ᘔ42694157078404491Ɛ55Ɛ/ᘔƐ

Strict definition

In strict definition, least number m beginning with 1 such that the quotient m/n is obtained merely by shifting the leftmost digit 1 of m to the right end are

1, 105263157894736842, 1034482758620689655172413793, 102564, 102040816326530612244897959183673469387755, 1016949152542372881355932203389830508474576271186440677966, 1014492753623188405797, 1012658227848, 10112359550561797752808988764044943820224719, 10, 100917431192660550458715596330275229357798165137614678899082568807339449541284403669724770642201834862385321, 100840336134453781512605042016806722689075630252, ... (sequence A128857 in the OEIS )

They are the period of n/(10n − 1), also the period of the decadic integer -n/(10n − 1).

Number of digits of them are

1, 18, 28, 6, 42, 58, 22, 13, 44, 2, 108, 48, 21, 46, 148, 13, 78, 178, 6, 99, 18, 8, 228, 7, 41, 6, 268, 15, 272, 66, 34, 28, 138, 112, 116, 179, 5, 378, 388, 18, 204, 418, 6, 219, 32, 48, 66, 239, 81, 498, ... (sequence A128858 in the OEIS )

See also

Notes

  1. Dawidoff, Nicholas (March 25, 2009), "The Civil Heretic", New York Times Magazine .
  2. Tierney, John (April 6, 2009), "Freeman Dyson's 4th-Grade Math Puzzle", New York Times .
  3. Tierney, John (April 13, 2009), "Prize for Dyson Puzzle", New York Times .

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:

Golden ratio base is a non-integer positional numeral system that uses the golden ratio as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" – this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φn + φn−1 = φn+1. For instance, 11φ = 100φ.

A palindromic number is a number that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term palindromic is derived from palindrome, which refers to a word whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers are:

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

33 (thirty-three) is the natural number following 32 and preceding 34.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

In mathematics, the Champernowne constantC10 is a transcendental real constant whose decimal expansion has important properties. It is named after economist and mathematician D. G. Champernowne, who published it as an undergraduate in 1933. The number is defined by concatenating the base-10 representations of the positive integers:

In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n,

A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix, or base, and they are all different, this article presents rules and examples only for decimal, or base 10, numbers. Martin Gardner explained and popularized these rules in his September 1962 "Mathematical Games" column in Scientific American.

In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number would be

A cyclic number is an integer for which cyclic permutations of the digits are successive integer multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are

Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits. The name refers to the bijection that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols.

Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.

A decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here . is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9.

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> Varying methods used to calculate pi

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

In mathematics, Midy's theorem, named after French mathematician E. Midy, is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period. If the period of the decimal representation of a/p is 2n, so that

A negative base may be used to construct a non-standard positional numeral system. Like other place-value systems, each position holds multiples of the appropriate power of the system's base; but that base is negative—that is to say, the base b is equal to −r for some natural number r.

A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.

In mathematics, the transposable integers are integers that permute or shift cyclically when they are multiplied by another integer . Examples are:

<span class="mw-page-title-main">Moser–de Bruijn sequence</span> Number, sum of distinct powers of 4

In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4. Equivalently, they are the numbers whose binary representations are nonzero only in even positions.

References