Self number

Last updated

In number theory, a self number or Devlali number in a given number base is a natural number that cannot be written as the sum of any other natural number and the individual digits of . 20 is a self number (in base 10), because no such combination can be found (all give a result less than 20; all other give a result greater than 20). 21 is not, because it can be written as 15 + 1 + 5 using n = 15. These numbers were first described in 1949 by the Indian mathematician D. R. Kaprekar. [1]

Contents

Definition and properties

Let be a natural number. We define the -self function for base to be the following:

where is the number of digits in the number in base , and

is the value of each digit of the number. A natural number is a -self number if the preimage of for is the empty set.

In general, for even bases, all odd numbers below the base number are self numbers, since any number below such an odd number would have to also be a 1-digit number which when added to its digit would result in an even number. For odd bases, all odd numbers are self numbers. [2]

The set of self numbers in a given base is infinite and has a positive asymptotic density: when is odd, this density is 1/2. [3]

Self numbers in specific bases

For base 2 self numbers, see OEIS:  A010061 . (written in base 10)

The first few base 10 self numbers are:

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, ... (sequence A003052 in the OEIS )

Self primes

A self prime is a self number that is prime.

The first few self primes in base 10 are

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, ... (sequence A006378 in the OEIS )

Related Research Articles

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.

In mathematics, an automorphic number is a natural number in a given number base whose square "ends" in the same digits as the number itself.

In mathematics, a natural number in a given number base is a -Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.

In recreational mathematics, a Keith number or repfigit number is a natural number in a given number base with digits such that when a sequence is created such that the first terms are the digits of and each subsequent term is the sum of the previous terms, is part of the sequence. Keith numbers were introduced by Mike Keith in 1987. They are computationally very challenging to find, with only about 100 known.

In mathematics, a harshad number in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base n are also known as n-harshad numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit harṣa (joy) + da (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977.

A Lychrel number is a natural number that cannot form a palindrome through the iterative process of repeatedly reversing its digits and adding the resulting numbers. This process is sometimes called the 196-algorithm, after the most famous number associated with the process. In base ten, no Lychrel numbers have been yet proven to exist, but many, including 196, are suspected on heuristic and statistical grounds. The name "Lychrel" was coined by Wade Van Landingham as a rough anagram of "Cheryl", his girlfriend's first name.

In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number would be

In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient

In number theory, a Dudeney number in a given number base is a natural number equal to the perfect cube of another natural number such that the digit sum of the first natural number is equal to the second. The name derives from Henry Dudeney, who noted the existence of these numbers in one of his puzzles, Root Extraction, where a professor in retirement at Colney Hatch postulates this as a general method for root extraction.

In number theory, a narcissistic number in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

A sum-product number in a given number base is a natural number that is equal to the product of the sum of its digits and the product of its digits.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

The digital root of a natural number in a given radix is the value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, in base 10, the digital root of the number 12345 is 6 because the sum of the digits in the number is 1 + 2 + 3 + 4 + 5 = 15, then the addition process is repeated again for the resulting number 15, so that the sum of 1 + 5 equals 6, which is the digital root of that number. In base 10, this is equivalent to taking the remainder upon division by 9, which allows it to be used as a divisibility rule.

In number theory, the multiplicative digital root of a natural number in a given number base is found by multiplying the digits of together, then repeating this operation until only a single-digit remains, which is called the multiplicative digital root of . The multiplicative digital root for the first few positive integers are:

In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. The name factorion was coined by the author Clifford A. Pickover.

In number theory and mathematical logic, a Meertens number in a given number base is a natural number that is its own Gödel number. It was named after Lambert Meertens by Richard S. Bird as a present during the celebration of his 25 years at the CWI, Amsterdam.

In number theory, a perfect digital invariant (PDI) is a number in a given number base () that is the sum of its own digits each raised to a given power ().

References

  1. Curley, James P. (April 30, 2015). "Self Numbers" . Retrieved 2024-02-29.
  2. Sándor & Crstici (2004) p.384
  3. Sándor & Crstici (2004) p.385