An amenable number is a positive integer for which there exists a multiset of as many integers as the original number that both add up to the original number and when multiplied together give the original number. To put it algebraically, for a positive integer n, there is a multiset of n integers {a1, ..., an}, for which the equalities hold. Negative numbers are allowed in the multiset. For example, 5 is amenable since 5 = 1 + (−1) + 1 + (−1) + 5. All and only those numbers congruent to 0 or 1 (mod 4), except 4, are amenable. ( Tamvakis & Lossers 1998 )
The first few amenable numbers are: 1, 5, 8, 9, 12, 13 ... OEIS: A100832
A solution for integers of the form n = 4k + 1 could be given by a set of 2k (+1)s and 2k (−1)s and n itself. (This generalizes the example of 5 given above.)
Although not obvious from the definition, the set of amenable numbers is closed under multiplication (the product of two amenable numbers is an amenable number).
All composite numbers would be amenable if the multiset was allowed to be of any length, because, even if other solutions are available, one can always obtain a solution by taking the prime factorization (expressed with repeated factors rather than exponents) and add as many 1s as necessary to add up to n. The product of this set of integers will yield n no matter how many 1s there are in the set. Furthermore, still under this assumption, any integer n would be amenable. Consider the inelegant solution for n of {1, −1, 1, −1, n}. In the sum, the positive ones are cancelled out by the negative ones, leaving n, while in the product, the two negative ones cancel out the effect of their signs.
Amenable numbers should not be confused with amicable numbers, which are pairs of integers whose divisors add up to each other.
In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product.
A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle.
15 (fifteen) is the natural number following 14 and preceding 16.
In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors of the number is greater than the number, but no subset of those divisors sums to the number itself.
In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.
29 (twenty-nine) is the natural number following 28 and preceding 30. It is a prime number.
A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.
69 is the natural number following 68 and preceding 70. An odd number and a composite number, 69 is divisible by 1, 3, 23 and 69.
58 (fifty-eight) is the natural number following 57 and preceding 59.
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.
A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.
In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity as n. That is,
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
In number theory, an odious number is a positive integer that has an odd number of 1s in its binary expansion. Non-negative integers that are not odious are called evil numbers.
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.
In number theory, an evil number is a non-negative integer that has an even number of 1s in its binary expansion. These numbers give the positions of the zero values in the Thue–Morse sequence, and for this reason they have also been called the Thue–Morse set. Non-negative integers that are not evil are called odious numbers.
In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are
In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.
353 is the natural number following 352 and preceding 354. It is a prime number.
In mathematics, the Perrin numbers are a doubly infinite constant-recursive integer sequence with characteristic equation x3 = x + 1. The Perrin numbers bear the same relationship to the Padovan sequence as the Lucas numbers do to the Fibonacci sequence.