In mathematics, a natural number in a given number base is a -Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.
Let be a natural number. Then the Kaprekar function for base and power is defined to be the following:
where and
A natural number is a -Kaprekar number if it is a fixed point for , which occurs if . and are trivial Kaprekar numbers for all and , all other Kaprekar numbers are nontrivial Kaprekar numbers.
The earlier example of 45 satisfies this definition with and , because
A natural number is a sociable Kaprekar number if it is a periodic point for , where for a positive integer (where is the th iterate of ), and forms a cycle of period . A Kaprekar number is a sociable Kaprekar number with , and a amicable Kaprekar number is a sociable Kaprekar number with .
The number of iterations needed for to reach a fixed point is the Kaprekar function's persistence of , and undefined if it never reaches a fixed point.
There are only a finite number of -Kaprekar numbers and cycles for a given base , because if , where then
and , , and . Only when do Kaprekar numbers and cycles exist.
If is any divisor of , then is also a -Kaprekar number for base .
In base , all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form or for natural number are Kaprekar numbers in base 2.
The set for a given integer can be defined as the set of integers for which there exist natural numbers and satisfying the Diophantine equation [1]
An -Kaprekar number for base is then one which lies in the set .
It was shown in 2000 [1] that there is a bijection between the unitary divisors of and the set defined above. Let denote the multiplicative inverse of modulo , namely the least positive integer such that , and for each unitary divisor of let and . Then the function is a bijection from the set of unitary divisors of onto the set . In particular, a number is in the set if and only if for some unitary divisor of .
The numbers in occur in complementary pairs, and . If is a unitary divisor of then so is , and if then .
Let and be natural numbers, the number base , and . Then:
Let
Then,
The two numbers and are
and their sum is
Thus, is a Kaprekar number.
Let
Then,
The two numbers and are
and their sum is
Thus, is a Kaprekar number.
Let , , and be natural numbers, the number base , and the power . Then:
Let , , and be natural numbers, the number base , and the power . Then:
Let , , and be natural numbers, the number base , and the power . Then:
Let , , and be natural numbers, the number base , and the power . Then:
All numbers are in base .
Base | Power | Nontrivial Kaprekar numbers , | Cycles |
---|---|---|---|
2 | 1 | 10 | |
3 | 1 | 2, 10 | |
4 | 1 | 3, 10 | |
5 | 1 | 4, 5, 10 | |
6 | 1 | 5, 6, 10 | |
7 | 1 | 3, 4, 6, 10 | |
8 | 1 | 7, 10 | 2 → 4 → 2 |
9 | 1 | 8, 10 | |
10 | 1 | 9, 10 | |
11 | 1 | 5, 6, A, 10 | |
12 | 1 | B, 10 | |
13 | 1 | 4, 9, C, 10 | |
14 | 1 | D, 10 | |
15 | 1 | 7, 8, E, 10 | 2 → 4 → 2 9 → B → 9 |
16 | 1 | 6, A, F, 10 | |
2 | 2 | 11 | |
3 | 2 | 22, 100 | |
4 | 2 | 12, 22, 33, 100 | |
5 | 2 | 14, 31, 44, 100 | |
6 | 2 | 23, 33, 55, 100 | 15 → 24 → 15 41 → 50 → 41 |
7 | 2 | 22, 45, 66, 100 | |
8 | 2 | 34, 44, 77, 100 | 4 → 20 → 4 11 → 22 → 11 45 → 56 → 45 |
2 | 3 | 111, 1000 | 10 → 100 → 10 |
3 | 3 | 111, 112, 222, 1000 | 10 → 100 → 10 |
2 | 4 | 110, 1010, 1111, 10000 | |
3 | 4 | 121, 2102, 2222, 10000 | |
2 | 5 | 11111, 100000 | 10 → 100 → 10000 → 1000 → 10 111 → 10010 → 1110 → 1010 → 111 |
3 | 5 | 11111, 22222, 100000 | 10 → 100 → 10000 → 1000 → 10 |
2 | 6 | 11100, 100100, 111111, 1000000 | 100 → 10000 → 100 1001 → 10010 → 1001 100101 → 101110 → 100101 |
3 | 6 | 10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000 | 100 → 10000 → 100 122012 → 201212 → 122012 |
2 | 7 | 1111111, 10000000 | 10 → 100 → 10000 → 10 1000 → 1000000 → 100000 → 1000 100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110 |
3 | 7 | 1111111, 1111112, 2222222, 10000000 | 10 → 100 → 10000 → 10 1000 → 1000000 → 100000 → 1000 1111121 → 1111211 → 1121111 → 1111121 |
2 | 8 | 1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000 | |
3 | 8 | 2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000 | |
2 | 9 | 10010011, 101101101, 111111111, 1000000000 | 10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10 1000 → 1000000 → 1000 10011010 → 11010010 → 10011010 |
Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.
In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the formula, and Faulhaber's formula for the sum of powers is an immediate consequence.
In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan.
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.
In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.
In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.
A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that
In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers.
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.
In mathematics, the Dirichlet beta function is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.
The decimal value of the natural logarithm of 2 is approximately
In number theory, a perfect digital invariant (PDI) is a number in a given number base () that is the sum of its own digits each raised to a given power ().