Semiprime

Last updated

In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes, [1] since they include two primes, or second numbers, [2] by analogy with how "prime" means "first".

Contents

Examples and variations

The semiprimes less than 100 are:

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, and 95 (sequence A001358 in the OEIS)

Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes:

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, ... (sequence A006881 in the OEIS)

The semiprimes are the case of the -almost primes, numbers with exactly prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). [3] These are:

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, ... (sequence A037143 in the OEIS)

Formula for number of semiprimes

A semiprime counting formula was discovered by E. Noel and G. Panos in 2005.[ citation needed ] Let denote the number of semiprimes less than or equal to n. Then where is the prime-counting function and denotes the kth prime. [4]

Properties

Semiprime numbers have no composite numbers as factors other than themselves. [5] For example, the number 26 is semiprime and its only factors are 1, 2, 13, and 26, of which only 26 is composite.

For a squarefree semiprime (with ) the value of Euler's totient function (the number of positive integers less than or equal to that are relatively prime to ) takes the simple form This calculation is an important part of the application of semiprimes in the RSA cryptosystem. [6] For a square semiprime , the formula is again simple: [6]

Applications

The Arecibo message Arecibo message bw.svg
The Arecibo message

Semiprimes are highly useful in the area of cryptography and number theory, most notably in public key cryptography, where they are used by RSA and pseudorandom number generators such as Blum Blum Shub. These methods rely on the fact that finding two large primes and multiplying them together (resulting in a semiprime) is computationally simple, whereas finding the original factors appears to be difficult. In the RSA Factoring Challenge, RSA Security offered prizes for the factoring of specific large semiprimes and several prizes were awarded. The original RSA Factoring Challenge was issued in 1991, and was replaced in 2001 by the New RSA Factoring Challenge, which was later withdrawn in 2007. [7]

In 1974 the Arecibo message was sent with a radio signal aimed at a star cluster. It consisted of binary digits intended to be interpreted as a bitmap image. The number was chosen because it is a semiprime and therefore can be arranged into a rectangular image in only two distinct ways (23 rows and 73 columns, or 73 rows and 23 columns). [8]

See also

Related Research Articles

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and less than n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

15 (fifteen) is the natural number following 14 and preceding 16.

<span class="mw-page-title-main">Golden spiral</span> Self-similar curve related to golden ratio

In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. That is, a golden spiral gets wider by a factor of φ for every quarter turn it makes.

In number theory, a sphenic number is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers.

29 (twenty-nine) is the natural number following 28 and preceding 30. It is a prime number.

35 (thirty-five) is the natural number following 34 and preceding 36.

34 (thirty-four) is the natural number following 33 and preceding 35.

58 (fifty-eight) is the natural number following 57 and preceding 59.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

<span class="mw-page-title-main">Pisano period</span> Period of the Fibonacci sequence modulo an integer

In number theory, the nth Pisano period, written as π(n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774.

A Fibonacci prime is a Fibonacci number that is prime, a type of integer sequence prime.

A Giuga number is a composite number n such that for each of its distinct prime factors pi we have , or equivalently such that for each of its distinct prime factors pi we have .

177 is the natural number following 176 and preceding 178.

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.

The Meissel–Lehmer algorithm is an algorithm that computes exact values of the prime-counting function.

References

  1. Sloane, N. J. A. (ed.). "SequenceA001358". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. Nowicki, Andrzej (2013-07-01), Second numbers in arithmetic progressions, arXiv: 1306.6424
  3. Stewart, Ian (2010). Professor Stewart's Cabinet of Mathematical Curiosities. Profile Books. p. 154. ISBN   9781847651280.
  4. Ishmukhametov, Sh. T.; Sharifullina, F. F. (2014). "On distribution of semiprime numbers". Russian Mathematics. 58 (8): 43–48. doi:10.3103/S1066369X14080052. MR   3306238. S2CID   122410656.
  5. French, John Homer (1889). Advanced Arithmetic for Secondary Schools. New York: Harper & Brothers. p. 53.
  6. 1 2 Cozzens, Margaret; Miller, Steven J. (2013). The Mathematics of Encryption: An Elementary Introduction. Mathematical World. Vol. 29. American Mathematical Society. p. 237. ISBN   9780821883211.
  7. "The RSA Factoring Challenge is no longer active". RSA Laboratories. Archived from the original on 2013-07-27.
  8. du Sautoy, Marcus (2011). The Number Mysteries: A Mathematical Odyssey through Everyday Life. St. Martin's Press. p. 19. ISBN   9780230120280.