Centered polyhedral number

Last updated

The centered polyhedral numbers are a class of figurate numbers, each formed by a central dot, surrounded by polyhedral layers with a constant number of edges. The length of the edges increases by one in each additional layer.

Examples

Related Research Articles

The term figurate number is used by different writers for members of different sets of numbers, generalizing from triangular numbers to different shapes and different dimensions. The term can mean

In mathematics and combinatorics, a centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following figures illustrate this arrangement for the first four centered hexagonal numbers:

An octagonal number is a figurate number that represents an octagon. The octagonal number for n is given by the formula 3n2 - 2n, with n > 0. The first few octagonal numbers are:

126 is the natural number following 125 and preceding 127.

Octahedral number

In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The nth octahedral number can be obtained by the formula:

In mathematics, a heptagonal pyramidal number is a figurate number representing the number of dots in a three-dimensional pattern in the shape of a heptagonal pyramid.

Centered triangular number centered figurate number that represents a triangle with a dot in the center

A centeredtriangular number is a centered figurate number that represents an equilateral triangle with a dot in the center and all its other dots surrounding the center in successive equilateral triangular layers.

A nonagonal number is a figurate number that extends the concept of triangular and square numbers to the nonagon. However, unlike the triangular and square numbers, the patterns involved in the construction of nonagonal numbers are not rotationally symmetrical. Specifically, the nth nonagonal number counts the number of dots in a pattern of n nested nonagons, all sharing a common corner, where the ith nonagon in the pattern has sides made of i dots spaced one unit apart from each other. The nonagonal number for n is given by the formula:

Centered cube number centered figurate number that counts the number of points in a three-dimensional pattern

A centered cube number is a centered figurate number that counts the number of points in a three-dimensional pattern formed by a point surrounded by concentric cubical layers of points, with i2 points on the square faces of the ith layer. Equivalently, it is the number of points in a body-centered cubic pattern within a cube that has n + 1 points along each of its edges.

Pentatope number

A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left.

Centered octagonal number centered figurate number that represents an octagon with a dot in the center

A centered octagonal number is a centered figurate number that represents an octagon with a dot in the center and all other dots surrounding the center dot in successive octagonal layers. The centered octagonal numbers are the same as the odd square numbers. Thus, the nth odd square number and tth centered octagonal number is given by the formula

Centered decagonal number centered figurate number that represents a decagon with a dot in the center

A centered decagonal number is a centered figurate number that represents a decagon with a dot in the center and all other dots surrounding the center dot in successive decagonal layers. The centered decagonal number for n is given by the formula

Stellated octahedron

The stellated octahedron is the only stellation of the octahedron. It is also called the stella octangula, a name given to it by Johannes Kepler in 1609, though it was known to earlier geometers. It was depicted in Pacioli's De Divina Proportione, 1509.

Chamfered dodecahedron

The chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

Gnomon (figure)

In geometry, a gnomon is a plane figure formed by removing a similar parallelogram from a corner of a larger parallelogram; or, more generally, a figure that, added to a given figure, makes a larger figure of the same shape.

Michel Deza

Michel Marie Deza was a Soviet and French mathematician, specializing in combinatorics, discrete geometry and graph theory. He was the retired director of research at the French National Centre for Scientific Research (CNRS), the vice president of the European Academy of Sciences, a research professor at the Japan Advanced Institute of Science and Technology, and one of the three founding editors-in-chief of the European Journal of Combinatorics.

A centered tetrahedral number is a centered figurate number that represents a tetrahedron. The centered tetrahedral number for a specific n is given by

Centered octahedral number figurate number

A centered octahedral number or Haüy octahedral number is a figurate number that counts the number of points of a three-dimensional integer lattice that lie inside an octahedron centered at the origin. The same numbers are special cases of the Delannoy numbers, which count certain two-dimensional lattice paths. The Haüy octahedral numbers are named after René Just Haüy.

Pollock's conjectures are two closely related unproven conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock, better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a partial extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers.

Elena Ivanovna Deza is a French and Russian mathematician known for her books on metric spaces and figurate numbers.

References