Practical number

Last updated
Demonstration of the practicality of the number 12 Practical number Cuisenaire rods 12.png
Demonstration of the practicality of the number 12

In number theory, a practical number or panarithmic number [1] is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

Contents

The sequence of practical numbers (sequence A005153 in the OEIS ) begins

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150....

Practical numbers were used by Fibonacci in his Liber Abaci (1202) in connection with the problem of representing rational numbers as Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators. [2]

The name "practical number" is due to Srinivasan (1948). He noted that "the subdivisions of money, weights, and measures involve numbers like 4, 12, 16, 20 and 28 which are usually supposed to be so inconvenient as to deserve replacement by powers of 10." His partial classification of these numbers was completed by Stewart (1954) and Sierpiński (1955). This characterization makes it possible to determine whether a number is practical by examining its prime factorization. Every even perfect number and every power of two is also a practical number.

Practical numbers have also been shown to be analogous with prime numbers in many of their properties. [3]

Characterization of practical numbers

The original characterisation by Srinivasan (1948) stated that a practical number cannot be a deficient number, that is one of which the sum of all divisors (including 1 and itself) is less than twice the number unless the deficiency is one. If the ordered set of all divisors of the practical number is with and , then Srinivasan's statement can be expressed by the inequality

In other words, the ordered sequence of all divisors of a practical number has to be a complete sub-sequence.

This partial characterization was extended and completed by Stewart (1954) and Sierpiński (1955) who showed that it is straightforward to determine whether a number is practical from its prime factorization. A positive integer greater than one with prime factorization (with the primes in sorted order ) is practical if and only if each of its prime factors is small enough for to have a representation as a sum of smaller divisors. For this to be true, the first prime must equal 2 and, for every i from 2 to k, each successive prime must obey the inequality

where denotes the sum of the divisors of x. For example, 2 × 32 × 29 × 823 = 429606 is practical, because the inequality above holds for each of its prime factors: 3 ≤ σ(2) + 1 = 4, 29 ≤ σ(2 × 32) + 1 = 40, and 823 ≤ σ(2 × 32 × 29) + 1 = 1171.

The condition stated above is necessary and sufficient for a number to be practical. In one direction, this condition is necessary in order to be able to represent as a sum of divisors of , because if the inequality failed to be true then even adding together all the smaller divisors would give a sum too small to reach . In the other direction, the condition is sufficient, as can be shown by induction. More strongly, if the factorization of satisfies the condition above, then any can be represented as a sum of divisors of , by the following sequence of steps: [4]

Properties

1, 2, 6, 20, 28, 30, 42, 66, 78, 88, 104, 140, 204, 210, 220, 228, 260, 272, 276, 304, 306, 308, 330, 340, 342, 348, 364, 368, 380, 390, 414, 460 ...

Relation to other classes of numbers

Several other notable sets of integers consist only of practical numbers:

Practical numbers and Egyptian fractions

If is practical, then any rational number of the form with may be represented as a sum where each is a distinct divisor of . Each term in this sum simplifies to a unit fraction, so such a sum provides a representation of as an Egyptian fraction. For instance,

Fibonacci, in his 1202 book Liber Abaci [2] lists several methods for finding Egyptian fraction representations of a rational number. Of these, the first is to test whether the number is itself already a unit fraction, but the second is to search for a representation of the numerator as a sum of divisors of the denominator, as described above. This method is only guaranteed to succeed for denominators that are practical. Fibonacci provides tables of these representations for fractions having as denominators the practical numbers 6, 8, 12, 20, 24, 60, and 100.

Vose (1985) showed that every rational number has an Egyptian fraction representation with terms. The proof involves finding a sequence of practical numbers with the property that every number less than may be written as a sum of distinct divisors of . Then, is chosen so that , and is divided by giving quotient and remainder . It follows from these choices that . Expanding both numerators on the right hand side of this formula into sums of divisors of results in the desired Egyptian fraction representation. Tenenbaum & Yokota (1990) use a similar technique involving a different sequence of practical numbers to show that every rational number has an Egyptian fraction representation in which the largest denominator is .

According to a September 2015 conjecture by Zhi-Wei Sun, [8] every positive rational number has an Egyptian fraction representation in which every denominator is a practical number. The conjecture was proved by DavidEppstein  ( 2021 ).

Analogies with prime numbers

One reason for interest in practical numbers is that many of their properties are similar to properties of the prime numbers. Indeed, theorems analogous to Goldbach's conjecture and the twin prime conjecture are known for practical numbers: every positive even integer is the sum of two practical numbers, and there exist infinitely many triples of practical numbers . [9] Melfi also showed [10] that there are infinitely many practical Fibonacci numbers (sequence A124105 in the OEIS ); the analogous question of the existence of infinitely many Fibonacci primes is open. Hausman & Shapiro (1984) showed that there always exists a practical number in the interval for any positive real , a result analogous to Legendre's conjecture for primes. Moreover, for all sufficiently large , the interval contains many practical numbers. [11]

Let count how many practical numbers are at most . Margenstern (1991) conjectured that is asymptotic to for some constant , a formula which resembles the prime number theorem, strengthening the earlier claim of Erdős & Loxton (1979) that the practical numbers have density zero in the integers. Improving on an estimate of Tenenbaum (1986), Saias (1997) found that has order of magnitude . Weingartner (2015) proved Margenstern's conjecture. We have [12]

where [13] Thus the practical numbers are about 33.6% more numerous than the prime numbers. The exact value of the constant factor is given by [14]

where is the Euler–Mascheroni constant and runs over primes.

As with prime numbers in an arithmetic progression, given two natural numbers and , we have [15]

The constant factor is positive if, and only if, there is more than one practical number congruent to . If , then . For example, about 38.26% of practical numbers have a last decimal digit of 0, while the last digits of 2, 4, 6, 8 each occur with the same relative frequency of 15.43%.

Notes

  1. Margenstern (1991) cites Robinson (1979) and Heyworth (1980) for the name "panarithmic numbers".
  2. 1 2 Sigler (2002).
  3. Hausman & Shapiro (1984); Margenstern (1991); Melfi (1996); Saias (1997).
  4. Stewart (1954); Sierpiński (1955).
  5. Margenstern (1991).
  6. Eppstein (2021).
  7. 1 2 3 4 Srinivasan (1948).
  8. Sun, Zhi-Wei, A Conjecture on Unit Fractions Involving Primes (PDF), archived from the original (PDF) on 2018-10-19, retrieved 2016-11-22
  9. Melfi (1996).
  10. Melfi (1995)
  11. Weingartner (2022).
  12. Weingartner (2015) and Remark 1 of Pomerance & Weingartner (2021)
  13. Weingartner (2020).
  14. Weingartner (2019).
  15. Weingartner (2021)

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

A highly composite number is a positive integer with more divisors than any smaller positive integer has. A related concept is that of a largely composite number, a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

<span class="mw-page-title-main">Lagrange's four-square theorem</span> Every natural number can be represented as the sum of four integer squares

Lagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

In algebraic geometry and the theory of complex manifolds, a logarithmic differential form is a differential form with poles of a certain kind. The concept was introduced by Pierre Deligne. In short, logarithmic differentials have the mildest possible singularities needed in order to give information about an open submanifold.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m < n:

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

<span class="mw-page-title-main">Divisor summatory function</span>

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

<span class="mw-page-title-main">Logit-normal distribution</span>

In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution. If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed. It is also known as the logistic normal distribution, which often refers to a multinomial logit version (e.g.).

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

References