This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(July 2009) |
Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit X. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms.[ citation needed ] In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be.[ citation needed ]
One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves also do not work directly with sets per se, but instead count them according to carefully chosen weight functions on these sets (options for giving some elements of these sets more "weight" than others). Furthermore, in some modern applications, sieves are used not to estimate the size of a sifted set, but to produce a function that is large on the set and mostly small outside it, while being easier to analyze than the characteristic function of the set.
The term sieve was first used by the Norwegian mathematician Viggo Brun in 1915. [1] However Brun's work was inspired by the works of the French mathematician Jean Merlin who died in the World War I and only two of his manuscripts survived. [2]
For information on notation see at the end.
We start with some countable sequence of non-negative numbers . In the most basic case this sequence is just the indicator function of some set we want to sieve. However this abstraction allows for more general situations. Next we introduce a general set of prime numbers called the sifting range and their product up to as a function .
The goal of sieve theory is to estimate the sifting function
In the case of this just counts the cardinality of a subset of numbers, that are coprime to the prime factors of .
For define
and for each prime denote the subset of multiples and let be the cardinality.
We now introduce a way to calculate the cardinality of . For this the sifting range will be a concrete example of primes of the form .
If one wants to calculate the cardinality of , one can apply the inclusion–exclusion principle. This algorithm works like this: first one removes from the cardinality of the cardinality and . Now since one has removed the numbers that are divisble by and twice, one has to add the cardinality . In the next step one removes and adds and again. Additionally one has now to remove , i.e. the cardinality of all numbers divisible by and . This leads to the inclusion–exclusion principle
Notice that one can write this as
where is the Möbius function and the product of all primes in and .
We can rewrite the sifting function with Legendre's identity
by using the Möbius function and some functions induced by the elements of
Let and . The Möbius function is negative for every prime, so we get
One assumes then that can be written as
where is a density, meaning a multiplicative function such that
and is an approximation of and is some remainder term. The sifting function becomes
or in short
One tries then to estimate the sifting function by finding upper and lower bounds for respectively and .
The partial sum of the sifting function alternately over- and undercounts, so the remainder term will be huge. Brun's idea to improve this was to replace in the sifting function with a weight sequence consisting of restricted Möbius functions. Choosing two appropriate sequences and and denoting the sifting functions with and , one can get lower and upper bounds for the original sifting functions
Since is multiplicative, one can also work with the identity
Notation: a word of caution regarding the notation, in the literature one often identifies the set of sequences with the set itself. This means one writes to define a sequence . Also in the literature the sum is sometimes notated as the cardinality of some set , while we have defined to be already the cardinality of this set. We used to denote the set of primes and for the greatest common divisor of and .
Modern sieves include the Brun sieve, the Selberg sieve, the Turán sieve, the large sieve, the larger sieve and the Goldston-Pintz-Yıldırım sieve. One of the original purposes of sieve theory was to try to prove conjectures in number theory such as the twin prime conjecture. While the original broad aims of sieve theory still are largely unachieved, there have been some partial successes, especially in combination with other number theoretic tools. Highlights include:
The techniques of sieve theory can be quite powerful, but they seem to be limited by an obstacle known as the parity problem , which roughly speaking asserts that sieve theory methods have extreme difficulty distinguishing between numbers with an odd number of prime factors and numbers with an even number of prime factors. This parity problem is still not very well understood.
Compared with other methods in number theory, sieve theory is comparatively elementary, in the sense that it does not necessarily require sophisticated concepts from either algebraic number theory or analytic number theory. Nevertheless, the more advanced sieves can still get very intricate and delicate (especially when combined with other deep techniques in number theory), and entire textbooks have been devoted to this single subfield of number theory; a classic reference is ( Halberstam & Richert 1974 ) and a more modern text is ( Iwaniec & Friedlander 2010 ).
The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.
The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted .
A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function in which
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.
In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
In mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou.
In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.
In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.
In mathematics, the Legendre sieve, named after Adrien-Marie Legendre, is the simplest method in modern sieve theory. It applies the concept of the Sieve of Eratosthenes to find upper or lower bounds on the number of primes within a given set of integers. Because it is a simple extension of Eratosthenes' idea, it is sometimes called the Legendre–Eratosthenes sieve.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics, a cardinal function is a function that returns cardinal numbers.
In the field of number theory, the Brun sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Viggo Brun in 1915 and later generalized to the fundamental lemma of sieve theory by others.
In number theory, the Selberg sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Atle Selberg in the 1940s.
In number theory, the Turán sieve is a technique for estimating the size of "sifted sets" of positive integers which satisfy a set of conditions which are expressed by congruences. It was developed by Pál Turán in 1934.
In number theory, the parity problem refers to a limitation in sieve theory that prevents sieves from giving good estimates in many kinds of prime-counting problems. The problem was identified and named by Atle Selberg in 1949. Beginning around 1996, John Friedlander and Henryk Iwaniec developed some parity-sensitive sieves that make the parity problem less of an obstacle.
In number theory, the fundamental lemma of sieve theory is any of several results that systematize the process of applying sieve methods to particular problems. Halberstam & Richert write:
A curious feature of sieve literature is that while there is frequent use of Brun's method there are only a few attempts to formulate a general Brun theorem ; as a result there are surprisingly many papers which repeat in considerable detail the steps of Brun's argument.
In potential theory and functional analysis, Dirichlet forms generalize the Laplacian. Dirichlet forms can be defined on any measure space, without the need for mentioning partial derivatives. This allows mathematicians to study the Laplace equation and heat equation on spaces that are not manifolds, for example, fractals. The benefit on these spaces is that one can do this without needing a gradient operator, and in particular, one can even weakly define a "Laplacian" in this manner if starting with the Dirichlet form.
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and
The Goldston-Pintz-Yıldırım sieve is a sieve method and variant of the Selberg sieve with generalized, multidimensional sieve weights. The sieve led to a series of important breakthroughs in analytic number theory.