Total no. of terms | infinity |
---|---|
Formula | |
First terms | 1, 13, 37, 73, 121, 181 |
OEIS index |
|
A star number is a centered figurate number, a centered hexagram (six-pointed star), such as the Star of David, or the board Chinese checkers is played on.
1 | 13 | 37 | ||
---|---|---|---|---|
| |
The nth star number is given by the formula Sn = 6n(n − 1) + 1. The first 45 star numbers are 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361, 9841, 10333, 10837, 11353, and 11881. (sequence A003154 in the OEIS )
The digital root of a star number is always 1 or 4, and progresses in the sequence 1, 4, 1. The last two digits of a star number in base 10 are always 01, 13, 21, 33, 37, 41, 53, 61, 73, 81, or 93.
Unique among the star numbers is 35113, since its prime factors (i.e., 13, 37 and 73) are also consecutive star numbers.
Geometrically, the nth star number is made up of a central point and 12 copies of the (n−1)th triangular number — making it numerically equal to the nth centered dodecagonal number, but differently arranged. As such, the formula the nth star number can be written as S_n=1+12T_n-1 where T_n=n(n+1)/2.
Infinitely many star numbers are also triangular numbers, the first four being S1 = 1 = T1, S7 = 253 = T22, S91 = 49141 = T313, and S1261 = 9533161 = T4366(sequence A156712 in the OEIS ).
Infinitely many star numbers are also square numbers, the first four being S1 = 12, S5 = 121 = 112, S45 = 11881 = 1092, and S441 = 1164241 = 10792(sequence A054318 in the OEIS ), for square stars (sequence A006061 in the OEIS ).
A star prime is a star number that is prime. The first few star primes (sequence A083577 in the OEIS ) are 13, 37, 73, 181, 337, 433, 541, 661, 937.
A superstar prime is a star prime whose prime index is also a star number. The first two such numbers are 661 and 1750255921.
A reverse superstar prime is a star number whose index is a star prime. The first few such numbers are 937, 7993, 31537, 195481, 679393, 1122337, 1752841, 2617561, 5262193.
The term "star number" or "stellate number" is occasionally used to refer to octagonal numbers. [1]
The harmonic series of unit fractions with the star numbers as denominators is:
The alternating series of unit fractions with the star numbers as denominators is:
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two numbers that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 and some from 1 and 2. Starting from 0 and 1, the sequence begins
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence of integer numbers. The sequence can be finite or infinite, resulting in a finite continued fraction like
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.
The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.
The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.
In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function.
In mathematics, and more particularly in number theory, primorial, denoted by "pn#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.
A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
An octagonal number is a figurate number that gives the number of points in a certain octagonal arrangement. The octagonal number for n is given by the formula 3n2 − 2n, with n > 0. The first few octagonal numbers are
In mathematics, the Champernowne constantC10 is a transcendental real constant whose decimal expansion has important properties. It is named after economist and mathematician D. G. Champernowne, who published it as an undergraduate in 1933. The number is defined by concatenating the base-10 representations of the positive integers:
A pronic number is a number that is the product of two consecutive integers, that is, a number of the form . The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers, or rectangular numbers; however, the term "rectangular number" has also been applied to the composite numbers.
A mathematical coincidence is said to occur when two expressions with no direct relationship show a near-equality which has no apparent theoretical explanation.
The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers of dots with a constant number of sides. Each side of a polygonal layer contains one more dot than each side in the previous layer; so starting from the second polygonal layer, each layer of a centered k-gonal number contains k more dots than the previous layer.
In number theory, a pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left. It is named because it represents the number of 3-dimensional unit spheres which can be packed into a pentatope of increasing side lengths.
In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form . The first few such primes are
The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as .
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.
In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x3 = x2 + 1.
In number theory, specifically in Diophantine approximation theory, the Markov constant of an irrational number is the factor for which Dirichlet's approximation theorem can be improved for .