In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ1 or the aliquot sum function s in the following way: [1] If the sn-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these sequences are usually 0 or 6.
For example, the aliquot sequence of 10 is 10, 8, 7, 1, 0 because:
Many aliquot sequences terminate at zero; all such sequences necessarily end with a prime number followed by 1 (since the only proper divisor of a prime is 1), followed by 0 (since 1 has no proper divisors). See (sequence A080907 in the OEIS ) for a list of such numbers up to 75. There are a variety of ways in which an aliquot sequence might not terminate:
n | Aliquot sequence of n | Length ( OEIS: A098007 ) |
---|---|---|
0 | 0 | 1 |
1 | 1, 0 | 2 |
2 | 2, 1, 0 | 3 |
3 | 3, 1, 0 | 3 |
4 | 4, 3, 1, 0 | 4 |
5 | 5, 1, 0 | 3 |
6 | 6 | 1 |
7 | 7, 1, 0 | 3 |
8 | 8, 7, 1, 0 | 4 |
9 | 9, 4, 3, 1, 0 | 5 |
10 | 10, 8, 7, 1, 0 | 5 |
11 | 11, 1, 0 | 3 |
12 | 12, 16, 15, 9, 4, 3, 1, 0 | 8 |
13 | 13, 1, 0 | 3 |
14 | 14, 10, 8, 7, 1, 0 | 6 |
15 | 15, 9, 4, 3, 1, 0 | 6 |
16 | 16, 15, 9, 4, 3, 1, 0 | 7 |
17 | 17, 1, 0 | 3 |
18 | 18, 21, 11, 1, 0 | 5 |
19 | 19, 1, 0 | 3 |
20 | 20, 22, 14, 10, 8, 7, 1, 0 | 8 |
21 | 21, 11, 1, 0 | 4 |
22 | 22, 14, 10, 8, 7, 1, 0 | 7 |
23 | 23, 1, 0 | 3 |
24 | 24, 36, 55, 17, 1, 0 | 6 |
25 | 25, 6 | 2 |
26 | 26, 16, 15, 9, 4, 3, 1, 0 | 8 |
27 | 27, 13, 1, 0 | 4 |
28 | 28 | 1 |
29 | 29, 1, 0 | 3 |
30 | 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0 | 16 |
31 | 31, 1, 0 | 3 |
32 | 32, 31, 1, 0 | 4 |
33 | 33, 15, 9, 4, 3, 1, 0 | 7 |
34 | 34, 20, 22, 14, 10, 8, 7, 1, 0 | 9 |
35 | 35, 13, 1, 0 | 4 |
36 | 36, 55, 17, 1, 0 | 5 |
37 | 37, 1, 0 | 3 |
38 | 38, 22, 14, 10, 8, 7, 1, 0 | 8 |
39 | 39, 17, 1, 0 | 4 |
40 | 40, 50, 43, 1, 0 | 5 |
41 | 41, 1, 0 | 3 |
42 | 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1, 0 | 15 |
43 | 43, 1, 0 | 3 |
44 | 44, 40, 50, 43, 1, 0 | 6 |
45 | 45, 33, 15, 9, 4, 3, 1, 0 | 8 |
46 | 46, 26, 16, 15, 9, 4, 3, 1, 0 | 9 |
47 | 47, 1, 0 | 3 |
The lengths of the aliquot sequences that start at n are
The final terms (excluding 1) of the aliquot sequences that start at n are
Numbers whose aliquot sequence terminates in 1 are
Numbers whose aliquot sequence known to terminate in a perfect number, other than perfect numbers themselves (6, 28, 496, ...), are
Numbers whose aliquot sequence terminates in a cycle with length at least 2 are
Numbers whose aliquot sequence is not known to be finite or eventually periodic are
A number that is never the successor in an aliquot sequence is called an untouchable number.
An important conjecture due to Catalan, sometimes called the Catalan–Dickson conjecture, is that every aliquot sequence ends in one of the above ways: with a prime number, a perfect number, or a set of amicable or sociable numbers. [3] The alternative would be that a number exists whose aliquot sequence is infinite yet never repeats. Any one of the many numbers whose aliquot sequences have not been fully determined might be such a number. The first five candidate numbers are often called the Lehmer five (named after D.H. Lehmer): 276, 552, 564, 660, and 966. [4] However, 276 may reach a high apex in its aliquot sequence and then descend; the number 138 reaches a peak of 179931895322 before returning to 1.
Guy and Selfridge believe the Catalan–Dickson conjecture is false (so they conjecture some aliquot sequences are unbounded above (i.e., diverge)). [5]
The aliquot sequence can be represented as a directed graph, , for a given integer , where denotes the sum of the proper divisors of . [6] Cycles in represent sociable numbers within the interval . Two special cases are loops that represent perfect numbers and cycles of length two that represent amicable pairs.
Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
21 (twenty-one) is the natural number following 20 and preceding 22.
In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.
In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.
In number theory, a k-hyperperfect number is a natural number n for which the equality holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A hyperperfect number is a k-hyperperfect number for some integer k. Hyperperfect numbers generalize perfect numbers, which are 1-hyperperfect.
In mathematics, sociable numbers are numbers whose aliquot sums form a periodic sequence. They are generalizations of the concepts of perfect numbers and amicable numbers. The first two sociable sequences, or sociable chains, were discovered and named by the Belgian mathematician Paul Poulet in 1918. In a sociable sequence, each number is the sum of the proper divisors of the preceding number, i.e., the sum excludes the preceding number itself. For the sequence to be sociable, the sequence must be cyclic and return to its starting point.
27 is the natural number following 26 and preceding 28.
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
360 is the natural number following 359 and preceding 361.
In mathematics, a harmonic divisor number or Ore number is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are
In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
The Ramanujan tau function, studied by Ramanujan, is the function defined by the following identity:
In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.
In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.
177 is the natural number following 176 and preceding 178.
In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.
In number theory, the aliquot sums(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is,
Betrothed numbers or quasi-amicable numbers are two positive integers such that the sum of the proper divisors of either number is one more than the value of the other number. In other words, (m, n) are a pair of betrothed numbers if s(m) = n + 1 and s(n) = m + 1, where s(n) is the aliquot sum of n: an equivalent condition is that σ(m) = σ(n) = m + n + 1, where σ denotes the sum-of-divisors function.