# 290 (number)

Last updated
 ← 289 290 291 →
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinal two hundred ninety
Ordinal 290th
(two hundred ninetieth)
Factorization 2 × 5 × 29
Greek numeral ΣϞ´
Roman numeral CCXC
Binary 1001000102
Ternary 1012023
Quaternary 102024
Quinary 21305
Senary 12026
Octal 4428
Duodecimal 20212
Vigesimal EA20
Base 36 8236

290 (two hundred [and] ninety) is the natural number following 289 and preceding 291.

## In mathematics

The product of three primes, 290 is a sphenic number, and the sum of four consecutive primes (67 + 71 + 73 + 79). The sum of the squares of the divisors of 17 is 290.

Not only is it a nontotient and a noncototient, it is also an untouchable number.

290 is the 16th member of the Mian–Chowla sequence; it can not be obtained as the sum of any two previous terms in the sequence. 

## Integers from 291 to 299

### 292

292 = 22·73, noncototient, untouchable number. The continued fraction representation of pi is [3; 7, 15, 1, 292, 1, 1, 1, 2...]; the convergent obtained by truncating before the surprisingly large term 292 yields the excellent rational approximation 355/113 to pi, repdigit in base 8 (444).

### 293

293 is prime, Sophie Germain prime, Chen prime, Irregular prime, Eisenstein prime with no imaginary part, strictly non-palindromic number. For 293 cells in cell biology, see HEK cell.

### 294

294 = 2·3·72, unique period in base 10

### 295

295 = 5·59, also, the numerical designation of seven circumferential or half-circumferential routes of Interstate 95 in the United States.

### 296

296 = 23·37, unique period in base 2

### 297

297 = 33·11, number of integer partitions of 17, decagonal number, Kaprekar number

### 298

298 = 2·149, nontotient, noncototient

### 299

299 = 13·23, highly cototient number, self number, the twelfth cake number

## Related Research Articles

86 (eighty-six) is the natural number following 85 and preceding 87.

34 (thirty-four) is the natural number following 33 and preceding 35.

97 (ninety-seven) is the natural number following 96 and preceding 98. It is a prime number.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it is often written with a comma separating the thousands unit: 1,000.

300 is the natural number following 299 and preceding 301.

400 is the natural number following 399 and preceding 401.

500 is the natural number following 499 and preceding 501.

700 is the natural number following 699 and preceding 701.

600 is the natural number following 599 and preceding 601.

800 is the natural number following 799 and preceding 801.

900 is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 integers. In base 10 it is a Harshad number.

2000 is a natural number following 1999 and preceding 2001.

260 is the natural number following 259 and preceding 261.

3000 is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English.

An untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

182 is the natural number following 181 and preceding 183.

270 is the natural number following 269 and preceding 271.

204 is the natural number following 203 and preceding 205.

206 is the natural number following 205 and preceding 207.

In mathematics, the Mian–Chowla sequence is an integer sequence defined recursively in the following way. The sequence starts with

1. "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.