208 (number)

Last updated
207 208 209
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinal two hundred eight
Ordinal 208th
(two hundred eighth)
Factorization 24 × 13
Greek numeral ΣΗ´
Roman numeral CCVIII
Binary 110100002
Ternary 212013
Quaternary 31004
Quinary 13135
Senary 5446
Octal 3208
Duodecimal 15412
Hexadecimal D016
Vigesimal A820
Base 36 5S36

208 (two hundred [and] eight) is the natural number following 207 and preceding 209.

208 is a practical number, [1] a tetranacci number, [2] [3] a rhombic matchstick number, [4] a happy number, and a member of Aronson's sequence. [5] There are exactly 208 five-bead necklaces drawn from a set of beads with four colors, [6] and 208 generalized weak orders on three labeled points. [7] [8]

Related Research Articles

220 is the natural number following 219 and preceding 221.

800 is the natural number following 799 and preceding 801.

2000 is a natural number following 1999 and preceding 2001.

5000 is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic number in the English language.

229 is the natural number following 228 and preceding 230.

100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105.

235 is the integer following 234 and preceding 236.

225 is the natural number following 224 and preceding 226.

237 is the natural number following 236 and preceding 238.

224 is the natural number following 223 and preceding 225.

207 is the natural number following 206 and preceding 208. It is an odd composite number with a prime factorization of .

209 is the natural number following 208 and preceding 210.

226 is the natural number following 225 and preceding 227.

232 is the natural number following 231 and preceding 233.

252 is the natural number following 251 and preceding 253.

20,000 is the natural number that comes after 19,999 and before 20,001.

30,000 is the natural number that comes after 29,999 and before 30,001.

70,000 is the natural number that comes after 69,999 and before 70,001. It is a round number.

888 is the natural number following 887 and preceding 889.

228 is the natural number following 227 and preceding 229.

References

  1. Sloane, N. J. A. (ed.). "SequenceA005153(Practical numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "SequenceA000078(Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. Waddill, Marcellus E. (1992), "The Tetranacci sequence and generalizations" (PDF), The Fibonacci Quarterly, 30 (1): 9–20, MR   1146535 .
  4. Sloane, N. J. A. (ed.). "SequenceA045944(Rhombic matchstick numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "SequenceA005224(T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  6. Sloane, N. J. A. (ed.). "SequenceA001868(Number of n-bead necklaces with 4 colors)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  7. Sloane, N. J. A. (ed.). "SequenceA004121(Generalized weak orders on n points)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  8. Wagner, Carl G. (1982), "Enumeration of generalized weak orders", Archiv der Mathematik, 39 (2): 147–152, doi:10.1007/BF01899195, MR   0675654 .