This article needs additional citations for verification .(May 2016) |
| ||||
---|---|---|---|---|
Cardinal | four hundred ninety-six | |||
Ordinal | 496th (four hundred ninety-sixth) | |||
Factorization | 24 × 31 | |||
Greek numeral | ΥϞϚ´ | |||
Roman numeral | CDXCVI | |||
Binary | 1111100002 | |||
Ternary | 2001013 | |||
Senary | 21446 | |||
Octal | 7608 | |||
Duodecimal | 35412 | |||
Hexadecimal | 1F016 |
496 (four hundred [and] ninety-six) is the natural number following 495 and preceding 497.
496 is most notable for being a perfect number, and one of the earliest numbers to be recognized as such. 496 is also a harmonic divisor number.
The group E8 has real dimension 496.
The number 496 is a very important number in superstring theory. In 1984, Michael Green and John H. Schwarz realized that one of the necessary conditions for a superstring theory to make sense is that the dimension of the gauge group of type I string theory must be 496. The group is therefore SO(32). Their discovery started the first superstring revolution. It was realized in 1985 that the heterotic string can admit another possible gauge group, namely E8 x E8.
The UK's Ofcom reserves telephone numbers in many dialing areas in the 496 local block for fictional purposes, such as 0114 496-1234. [1]
In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.
M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.
T-duality in theoretical physics is an equivalence of two physical theories, which may be either quantum field theories or string theories. In the simplest example of this relationship, one of the theories describes strings propagating in a spacetime shaped like a circle of some radius , while the other theory describes strings propagating on a spacetime shaped like a circle of radius proportional to . The idea of T-duality was first noted by Bala Sathiapalan in an obscure paper in 1987. The two T-dual theories are equivalent in the sense that all observable quantities in one description are identified with quantities in the dual description. For example, momentum in one description takes discrete values and is equal to the number of times the string winds around the circle in the dual description.
In theoretical physics, S-duality is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier.
In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.
In string theory, a heterotic string is a closed string (or loop) which is a hybrid ('heterotic') of a superstring and a bosonic string. There are two kinds of heterotic superstring theories, the heterotic SO(32) and the heterotic E8 × E8, abbreviated to HO and HE. Apart from that there exist seven more heterotic string theories which are not supersymmetric and hence are only of secondary importance in most applications. Heterotic string theory was first developed in 1985 by David Gross, Jeffrey Harvey, Emil Martinec, and Ryan Rohm (the so-called "Princeton string quartet"), in one of the key papers that fueled the first superstring revolution.
In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theories have extended supersymmetry which is maximal amount of supersymmetry — namely 32 supercharges — in ten dimensions. Both theories are based on oriented closed strings. On the worldsheet, they differ only in the choice of GSO projection. They were first discovered by Michael Green and John Henry Schwarz in 1982, with the terminology of type I and type II coined to classify the three string theories known at the time.
The Green–Schwarz mechanism is the main discovery that started the first superstring revolution in superstring theory.
In theoretical physics, the Hořava–Witten theory argues that the cancellation of anomalies guarantees that a supersymmetric gauge theory with the E8 gauge group propagates on a type of domain wall. This domain wall, a Hořava–Witten domain wall, behaves as a boundary of the eleven-dimensional spacetime in M-theory. Proposed by Petr Hořava and Edward Witten, the theory is important for various relations between M-theory and superstring theory.
The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics.
String duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles.
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
David Ian Olive ; 16 April 1937 – 7 November 2012) was a British theoretical physicist. Olive made fundamental contributions to string theory and duality theory, he is particularly known for his work on the GSO projection and Montonen–Olive duality.
In theoretical physics the Hanany–Witten transition, also called the Hanany–Witten effect, refers to any process in a superstring theory in which two p-branes cross resulting in the creation or destruction of a third p-brane. A special case of this process was first discovered by Amihay Hanany and Edward Witten in 1996. All other known cases of Hanany–Witten transitions are related to the original case via combinations of S-dualities and T-dualities. This effect can be expanded to string theory, 2 strings cross together resulting in the creation or destruction of a third string.
Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.
In physics, matrix string theory is a set of equations that describe superstring theory in a non-perturbative framework. Type IIA string theory can be shown to be equivalent to a maximally supersymmetric two-dimensional gauge theory, the gauge group of which is U(N) for a large value of N. This matrix string theory was first proposed by Luboš Motl in 1997 and later independently in a more complete paper by Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde. Another matrix string theory equivalent to Type IIB string theory was constructed in 1996 by Ishibashi, Kawai, Kitazawa and Tsuchiya.
This page is a glossary of terms in string theory, including related areas such as supergravity, supersymmetry, and high energy physics.
In four spacetime dimensions, N = 8 supergravity, speculated by Stephen Hawking, is the most symmetric quantum field theory which involves gravity and a finite number of fields. It can be found from a dimensional reduction of eleven-dimensional supergravity by making the size of seven of the dimensions go to zero. It has eight supersymmetries, which is the most any gravitational theory can have, since there are eight half-steps between spin 2 and spin −2. More supersymmetries would mean the particles would have superpartners with spins higher than 2. The only theories with spins higher than 2 which are consistent involve an infinite number of particles. Stephen Hawking in his Brief History of Time speculated that this theory could be the Theory of Everything. However, in later years this was abandoned in favour of string theory. There has been renewed interest in the 21st century, with the possibility that this theory may be finite.
In string theory, a domain wall is a theoretical (d−1)-dimensional singularity. A domain wall is meant to represent an object of codimension one embedded into space. For example, D8-branes are domain walls in type II string theory. In M-theory, the existence of Horava–Witten domain walls, "ends of the world" that carry an E8 gauge theory, is important for various relations between superstring theory and M-theory.