6000 (number)

Last updated
5999 6000 6001
Cardinal six thousand
Ordinal 6000th
(six thousandth)
Factorization 24 × 3 × 53
Greek numeral ,Ϛ´
Roman numeral VM, or VI
Unicode symbol(s)VM, vm, VI, vi
Binary 10111011100002
Ternary 220200203
Senary 434406
Octal 135608
Duodecimal 358012
Hexadecimal 177016
Armenian Ց

6000 (six thousand) is the natural number following 5999 and preceding 6001.

Contents

Selected numbers in the range 6001–6999

6001 to 6099

6100 to 6199

6200 to 6299

6300 to 6399

6400 to 6499

6500 to 6599

6600 to 6699

6700 to 6799

6800 to 6899

6900 to 6999

Prime numbers

There are 117 prime numbers between 6000 and 7000: [26] [27]

6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997

See also

References

  1. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA069099(Centered heptagonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA001106(9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers: records for a(n) in A063741.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "SequenceA005900(Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "SequenceA001599(Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  6. 1 2 Sloane, N. J. A. (ed.). "SequenceA000330(Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  7. 1 2 Sloane, N. J. A. (ed.). "SequenceA016754(Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "SequenceA076980(Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  9. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA001107(10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  10. Gardner, Martin (September–October 1997), "The numerology of Dr. Rashad Khalifa", Skeptical Inquirer, archived from the original on 2004-09-27
  11. Sloane, N. J. A. (ed.). "SequenceA002411(Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  12. Sloane, N. J. A. (ed.). "SequenceA002559(Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  13. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  14. Sloane, N. J. A. (ed.). "SequenceA007053(Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  15. Sloane, N. J. A. (ed.). "SequenceA000292(Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  16. Sloane, N. J. A. (ed.). "SequenceA082897(Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  17. Sloane, N. J. A. (ed.). "SequenceA002997(Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  18. Sloane, N. J. A. (ed.). "SequenceA001628(Convolved Fibonacci numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  19. Sloane, N. J. A. (ed.). "SequenceA000217(Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  20. Sloane, N. J. A. (ed.). "SequenceA060544(Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  21. Sloane, N. J. A. (ed.). "SequenceA069132(Centered 19-gonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  22. Sloane, N. J. A. (ed.). "SequenceA000045(Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  23. Sloane, N. J. A. (ed.). "SequenceA006958(Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  24. Sloane, N. J. A. (ed.). "SequenceA000219(Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  25. Sloane, N. J. A. (ed.). "SequenceA014575(Vampire numbers (definition 2): numbers n with an even number of digits which have a factorization n = i*j where i and j have the same number of digits and the multiset of the digits of n coincides with the multiset of the digits of i and j.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  26. Sloane, N. J. A. (ed.). "SequenceA038823(Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  27. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.