Balanced prime

Last updated

In number theory, a balanced prime is a prime number with equal-sized prime gaps above and below it, so that it is equal to the arithmetic mean of the nearest primes above and below. Or to put it algebraically, the th prime number is a balanced prime if

Contents

For example, 53 is the sixteenth prime; the fifteenth and seventeenth primes, 47 and 59, add up to 106, and half of that is 53; thus 53 is a balanced prime.

Examples

The first few balanced primes are

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903 (sequence A006562 in the OEIS ).

Infinitude

Unsolved problem in mathematics:

Are there infinitely many balanced primes?

It is conjectured that there are infinitely many balanced primes.

Three consecutive primes in arithmetic progression is sometimes called a CPAP-3. A balanced prime is by definition the second prime in a CPAP-3. As of 2023 the largest known CPAP-3 has 15004 decimal digits and was found by Serge Batalov. It is: [1]

(The value of n, i.e. its position in the sequence of all primes, is not known.)

Generalization

The balanced primes may be generalized to the balanced primes of order n. A balanced prime of order n is a prime number that is equal to the arithmetic mean of the nearest n primes above and below. Algebraically, the th prime number is a balanced prime of order if

Thus, an ordinary balanced prime is a balanced prime of order 1. The sequences of balanced primes of orders 2, 3, and 4 are A082077 , A082078 , and A082079 in the OEIS respectively.

See also

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients arising in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy.

In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which gka. Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n.

10 (ten) is the even natural number following 9 and preceding 11. Ten is the base of the decimal numeral system, the most common system of denoting numbers in both spoken and written language.

In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets.

In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes.

In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.

In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.

In number theory, a full reptend prime, full repetend prime, proper prime or long prime in base b is an odd prime number p such that the Fermat quotient

177 is the natural number following 176 and preceding 178.

5 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits.

744 is the natural number following 743 and preceding 745.

In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes, which is given by for .

<span class="mw-page-title-main">Sixth power</span>

In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:

<span class="mw-page-title-main">Square root of 7</span> Positive real number which when multiplied by itself gives 7

The square root of 7 is the positive real number that, when multiplied by itself, gives the prime number 7. It is more precisely called the principal square root of 7, to distinguish it from the negative number with the same property. This number appears in various geometric and number-theoretic contexts. It can be denoted in surd form as:

References

  1. The Largest Known CPAP's. Retrieved on 2023-01-06.