Regular prime

Last updated
Unsolved problem in mathematics:
Are there infinitely many regular primes, and if so, is their relative density ?

In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers.

Contents

The first few regular odd primes are:

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... (sequence A007703 in the OEIS ).

History and motivation

In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent p if p is regular. This focused attention on the irregular primes. [1] In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent p, if (p, p − 3) is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either (p, p − 3) or (p, p − 5) fails to be an irregular pair.

((p, 2k) is an irregular pair when p is irregular due to a certain condition described below being realized at 2k.)

Kummer found the irregular primes less than 165. In 1963, Lehmer reported results up to 10000 and Selfridge and Pollack announced in 1964 to have completed the table of irregular primes up to 25000. Although the two latter tables did not appear in print, Johnson found that (p, p − 3) is in fact an irregular pair for p = 16843 and that this is the first and only time this occurs for p < 30000. [2] It was found in 1993 that the next time this happens is for p = 2124679; see Wolstenholme prime. [3]

Definition

Class number criterion

An odd prime number p is defined to be regular if it does not divide the class number of the pth cyclotomic field Q(ζp), where ζp is a primitive pth root of unity.

The prime number 2 is often considered regular as well.

The class number of the cyclotomic field is the number of ideals of the ring of integers Z(ζp) up to equivalence. Two ideals I, J are considered equivalent if there is a nonzero u in Q(ζp) so that I = uJ. The first few of these class numbers are listed in OEIS:  A000927 .

Kummer's criterion

Ernst Kummer ( Kummer 1850 ) showed that an equivalent criterion for regularity is that p does not divide the numerator of any of the Bernoulli numbers Bk for k = 2, 4, 6, ..., p 3.

Kummer's proof that this is equivalent to the class number definition is strengthened by the Herbrand–Ribet theorem, which states certain consequences of p dividing the numerator of one of these Bernoulli numbers.

Siegel's conjecture

It has been conjectured that there are infinitely many regular primes. More precisely Carl LudwigSiegel  ( 1964 ) conjectured that e −1/2, or about 60.65%, of all prime numbers are regular, in the asymptotic sense of natural density.

Taking Kummer's criterion, the chance that one numerator of the Bernoulli numbers , , is not divisible by the prime is

so that the chance that none of the numerators of these Bernoulli numbers are divisible by the prime is

.

By E_(mathematical_constant), we have

so that we obtain the probability

.

It follows that about of the primes are regular by chance. Hart et al. [4] indicate that of the primes less than are regular.

Irregular primes

An odd prime that is not regular is an irregular prime (or Bernoulli irregular or B-irregular to distinguish from other types of irregularity discussed below). The first few irregular primes are:

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, ... (sequence A000928 in the OEIS )

Infinitude

K. L. Jensen (a student of Nielsen [5] ) proved in 1915 that there are infinitely many irregular primes of the form 4n + 3. [6] In 1954 Carlitz gave a simple proof of the weaker result that there are in general infinitely many irregular primes. [7]

Metsänkylä proved in 1971 that for any integer T > 6, there are infinitely many irregular primes not of the form mT + 1 or mT − 1, [8] and later generalized this. [9]

Irregular pairs

If p is an irregular prime and p divides the numerator of the Bernoulli number B2k for 0 < 2k < p − 1, then (p, 2k) is called an irregular pair. In other words, an irregular pair is a bookkeeping device to record, for an irregular prime p, the particular indices of the Bernoulli numbers at which regularity fails. The first few irregular pairs (when ordered by k) are:

(691, 12), (3617, 16), (43867, 18), (283, 20), (617, 20), (131, 22), (593, 22), (103, 24), (2294797, 24), (657931, 26), (9349, 28), (362903, 28), ... (sequence A189683 in the OEIS ).

The smallest even k such that nth irregular prime divides Bk are

32, 44, 58, 68, 24, 22, 130, 62, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 100, 200, 382, 126, 240, 366, 196, 130, 94, 292, 400, 86, 270, 222, 52, 90, 22, ... (sequence A035112 in the OEIS )

For a given prime p, the number of such pairs is called the index of irregularity of p. [10] Hence, a prime is regular if and only if its index of irregularity is zero. Similarly, a prime is irregular if and only if its index of irregularity is positive.

It was discovered that (p, p − 3) is in fact an irregular pair for p = 16843, as well as for p = 2124679. There are no more occurrences for p < 109.

Irregular index

An odd prime p has irregular indexn if and only if there are n values of k for which p divides B2k and these ks are less than (p − 1)/2. The first irregular prime with irregular index greater than 1 is 157, which divides B62 and B110, so it has an irregular index 2. Clearly, the irregular index of a regular prime is 0.

The irregular index of the nth prime is

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, ... (Start with n = 2, or the prime = 3) (sequence A091888 in the OEIS )

The irregular index of the nth irregular prime is

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, ... (sequence A091887 in the OEIS )

The primes having irregular index 1 are

37, 59, 67, 101, 103, 131, 149, 233, 257, 263, 271, 283, 293, 307, 311, 347, 389, 401, 409, 421, 433, 461, 463, 523, 541, 557, 577, 593, 607, 613, 619, 653, 659, 677, 683, 727, 751, 757, 761, 773, 797, 811, 821, 827, 839, 877, 881, 887, 953, 971, ... (sequence A073276 in the OEIS )

The primes having irregular index 2 are

157, 353, 379, 467, 547, 587, 631, 673, 691, 809, 929, 1291, 1297, 1307, 1663, 1669, 1733, 1789, 1933, 1997, 2003, 2087, 2273, 2309, 2371, 2383, 2423, 2441, 2591, 2671, 2789, 2909, 2957, ... (sequence A073277 in the OEIS )

The primes having irregular index 3 are

491, 617, 647, 1151, 1217, 1811, 1847, 2939, 3833, 4003, 4657, 4951, 6763, 7687, 8831, 9011, 10463, 10589, 12073, 13217, 14533, 14737, 14957, 15287, 15787, 15823, 16007, 17681, 17863, 18713, 18869, ... (sequence A060975 in the OEIS )

The least primes having irregular index n are

2, 3, 37, 157, 491, 12613, 78233, 527377, 3238481, ... (sequence A061576 in the OEIS ) (This sequence defines "the irregular index of 2" as −1, and also starts at n = −1.)

Generalizations

Euler irregular primes

Similarly, we can define an Euler irregular prime (or E-irregular) as a prime p that divides at least one Euler number E2n with 0 < 2np − 3. The first few Euler irregular primes are

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587, ... (sequence A120337 in the OEIS )

The Euler irregular pairs are

(61, 6), (277, 8), (19, 10), (2659, 10), (43, 12), (967, 12), (47, 14), (4241723, 14), (228135437, 16), (79, 18), (349, 18), (84224971, 18), (41737, 20), (354957173, 20), (31, 22), (1567103, 22), (1427513357, 22), (2137, 24), (111691689741601, 24), (67, 26), (61001082228255580483, 26), (71, 28), (30211, 28), (2717447, 28), (77980901, 28), ...

Vandiver proved in 1940 that Fermat's Last Theorem (xp + yp = zp) has no solution for integers x, y, z with gcd(xyz, p) = 1 if p is Euler-regular. Gut proved that x2p + y2p = z2p has no solution if p has an E-irregularity index less than 5. [11]

It was proven that there is an infinity of E-irregular primes. A stronger result was obtained: there is an infinity of E-irregular primes congruent to 1 modulo 8. As in the case of Kummer's B-regular primes, there is as yet no proof that there are infinitely many E-regular primes, though this seems likely to be true.

Strong irregular primes

A prime p is called strong irregular if it is both B-irregular and E-irregular (the indexes of Bernoulli and Euler numbers that are divisible by p can be either the same or different). The first few strong irregular primes are

67, 101, 149, 263, 307, 311, 353, 379, 433, 461, 463, 491, 541, 577, 587, 619, 677, 691, 751, 761, 773, 811, 821, 877, 887, 929, 971, 1151, 1229, 1279, 1283, 1291, 1307, 1319, 1381, 1409, 1429, 1439, ... (sequence A128197 in the OEIS )

To prove the Fermat's Last Theorem for a strong irregular prime p is more difficult (since Kummer proved the first case of Fermat's Last Theorem for B-regular primes, Vandiver proved the first case of Fermat's Last Theorem for E-regular primes), the most difficult is that p is not only a strong irregular prime, but 2p + 1, 4p + 1, 8p + 1, 10p + 1, 14p + 1, and 16p + 1 are also all composite (Legendre proved the first case of Fermat's Last Theorem for primes p such that at least one of 2p + 1, 4p + 1, 8p + 1, 10p + 1, 14p + 1, and 16p + 1 is prime), the first few such p are

263, 311, 379, 461, 463, 541, 751, 773, 887, 971, 1283, ...

Weak irregular primes

A prime p is weak irregular if it is either B-irregular or E-irregular (or both). The first few weak irregular primes are

19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593, ... (sequence A250216 in the OEIS )

Like the Bernoulli irregularity, the weak regularity relates to the divisibility of class numbers of cyclotomic fields. In fact, a prime p is weak irregular if and only if p divides the class number of the 4pth cyclotomic field Q(ζ4p).

Weak irregular pairs

In this section, "an" means the numerator of the nth Bernoulli number if n is even, "an" means the (n − 1)th Euler number if n is odd (sequence A246006 in the OEIS ).

Since for every odd prime p, p divides ap if and only if p is congruent to 1 mod 4, and since p divides the denominator of (p − 1)th Bernoulli number for every odd prime p, so for any odd prime p, p cannot divide ap−1. Besides, if and only if an odd prime p divides an (and 2p does not divide n), then p also divides an+k(p−1) (if 2p divides n, then the sentence should be changed to "p also divides an+2kp". In fact, if 2p divides n and p(p − 1) does not divide n, then p divides an.) for every integer k (a condition is n + k(p − 1) must be > 1). For example, since 19 divides a11 and 2 × 19 = 38 does not divide 11, so 19 divides a18k+11 for all k. Thus, the definition of irregular pair (p, n), n should be at most p − 2.

The following table shows all irregular pairs with odd prime p ≤ 661:

pintegers
0 ≤ np − 2
such that p divides an
pintegers
0 ≤ np − 2
such that p divides an
pintegers
0 ≤ np − 2
such that p divides an
pintegers
0 ≤ np − 2
such that p divides an
pintegers
0 ≤ np − 2
such that p divides an
pintegers
0 ≤ np − 2
such that p divides an
37919181293156421240557222
58319130788, 91, 137431563175, 261
7891937531187, 193, 292433215, 366569
1197197313439571389
1310163, 6819931744357752, 209, 427
171032421133144958745, 90, 92
191110722313333745759322
23109227347280461196, 427599
2911322934919, 257463130, 229601
31231272338435371, 186, 30046794, 194607592
373213122239359125479613522
4113743241211, 23936748761720, 174, 338
4313139129251127373163491292, 336, 338, 429619371, 428, 543
4715149130, 147257164379100, 174, 31749963180, 226
53151263100, 213383503641
594415762, 110269389200509141643
61716327184397521647236, 242, 554
6727, 58167277940138252340065348
712917328140912654186, 465659224
7317928320419159547270, 486661

The only primes below 1000 with weak irregular index 3 are 307, 311, 353, 379, 577, 587, 617, 619, 647, 691, 751, and 929. Besides, 491 is the only prime below 1000 with weak irregular index 4, and all other odd primes below 1000 with weak irregular index 0, 1, or 2. (Weak irregular index is defined as "number of integers 0 ≤ np − 2 such that p divides an.)

The following table shows all irregular pairs with n ≤ 63. (To get these irregular pairs, we only need to factorize an. For example, a34 = 17 × 151628697551, but 17 < 34 + 2, so the only irregular pair with n = 34 is (151628697551, 34)) (for more information (even ns up to 300 and odd ns up to 201), see [12] ).

nprimes pn + 2 such that p divides annprimes pn + 2 such that p divides an
03237, 683, 305065927
133930157, 42737921, 52536026741617
234151628697551
3354153, 8429689, 2305820097576334676593
43626315271553053477373
5379257, 73026287, 25355088490684770871
638154210205991661
7613923489580527043108252017828576198947741
840137616929, 1897170067619
927741763601, 52778129, 359513962188687126618793
10421520097643918070802691
1119, 265943137, 5563, 13599529127564174819549339030619651971
126914459, 8089, 2947939, 1798482437
1343, 96745587, 32027, 9728167327, 36408069989737, 238716161191111
1446383799511, 67568238839737
1547, 424172347285528427091, 1229030085617829967076190070873124909
16361748653, 56039, 153289748932447906241
17228135437495516994249383296071214195242422482492286460673697
184386750417202699, 47464429777438199
1979, 349, 87224971515639, 1508047, 10546435076057211497, 67494515552598479622918721
20283, 61752577, 58741, 401029177, 4534045619429
2141737, 354957173531601, 2144617, 537569557577904730817, 429083282746263743638619
22131, 5935439409, 660183281, 1120412849144121779
2331, 1567103, 1427513357552749, 3886651, 78383747632327, 209560784826737564385795230911608079
24103, 229479756113161, 163979, 19088082706840550550313
252137, 111691689741601575303, 7256152441, 52327916441, 2551319957161, 12646529075062293075738167
266579315867, 186707, 6235242049, 37349583369104129
2767, 61001082228255580483591459879476771247347961031445001033, 8645932388694028255845384768828577
289349, 362903602003, 5549927, 109317926249509865753025015237911
2971, 30211, 2717447, 77980901616821509, 14922423647156041, 190924415797997235233811858285255904935247
301721, 100125988162157, 266689, 329447317, 28765594733083851481
3115669721, 2817815921859892110163101, 6863, 418739, 1042901, 91696392173931715546458327937225591842756597414460291393

The following table shows irregular pairs (p, pn) (n ≥ 2), it is a conjecture that there are infinitely many irregular pairs (p, pn) for every natural number n ≥ 2, but only few were found for fixed n. For some values of n, even there is no known such prime p.

nprimes p such that p divides apn (these p are checked up to 20000) OEIS sequence
2149, 241, 2946901, 16467631, 17613227, 327784727, 426369739, 1062232319, ... A198245
316843, 2124679, ... A088164
4...
537, ...
6...
7...
819, 31, 3701, ...
967, 877, ... A212557
10139, ...
119311, ...
12...
13...
14...
1559, 607, ...
161427, 6473, ...
172591, ...
18...
19149, 311, 401, 10133, ...
209643, ...
218369, ...
22...
23...
2417011, ...
25...
26...
27...
28...
294219, 9133, ...
3043, 241, ...
313323, ...
3247, ...
33101, 2267, ...
34461, ...
35...
361663, ...
37...
38101, 5147, ...
393181, 3529, ...
4067, 751, 16007, ...
41773, ...

See also

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ais prime tob or ais coprime withb.

In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p.

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number apa is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University. The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that

In mathematics, a Fermat number, named after Pierre de Fermat (1607–1665), the first known to have studied them, is a positive integer of the form: where n is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, ....

In arithmetic, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and

In mathematics, a Cullen number is a member of the integer sequence . Cullen numbers were first studied by James Cullen in 1905. The numbers are special cases of Proth numbers.

In number theory, a Wieferich prime is a prime number p such that p2 divides 2p − 1 − 1, therefore connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1 − 1. Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians.

<span class="mw-page-title-main">Constructible polygon</span> Regular polygon that can be constructed with compass and straightedge

In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.

In mathematics, the Herbrand–Ribet theorem is a result on the class group of certain number fields. It is a strengthening of Ernst Kummer's theorem to the effect that the prime p divides the class number of the cyclotomic field of p-th roots of unity if and only if p divides the numerator of the n-th Bernoulli number Bn for some n, 0 < n < p − 1. The Herbrand–Ribet theorem specifies what, in particular, it means when p divides such an Bn.

In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by Karl von Staudt and Thomas Clausen.

In mathematics, the Kummer–Vandiver conjecture, or Vandiver conjecture, states that a prime p does not divide the class number hK of the maximal real subfield of the p-th cyclotomic field. The conjecture was first made by Ernst Kummer on 28 December 1849 and 24 April 1853 in letters to Leopold Kronecker, reprinted in, and independently rediscovered around 1920 by Philipp Furtwängler and Harry Vandiver,

In number theory, a branch of mathematics, a Mirimanoff's congruence is one of a collection of expressions in modular arithmetic which, if they hold, entail the truth of Fermat's Last Theorem. Since the theorem has now been proven, these are now of mainly historical significance, though the Mirimanoff polynomials are interesting in their own right. The theorem is due to Dmitry Mirimanoff.

<span class="mw-page-title-main">Fermat's Last Theorem</span> 17th-century conjecture proved by Andrew Wiles in 1994

In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

In number theory, a Wolstenholme prime is a special type of prime number satisfying a stronger version of Wolstenholme's theorem. Wolstenholme's theorem is a congruence relation satisfied by all prime numbers greater than 3. Wolstenholme primes are named after mathematician Joseph Wolstenholme, who first described this theorem in the 19th century.

In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers.

References

  1. Gardiner, A. (1988), "Four Problems on Prime Power Divisibility", American Mathematical Monthly, 95 (10): 926–931, doi:10.2307/2322386, JSTOR   2322386
  2. Johnson, W. (1975), "Irregular Primes and Cyclotomic Invariants", Mathematics of Computation , 29 (129): 113–120, doi: 10.2307/2005468 , JSTOR   2005468
  3. Buhler, J.; Crandall, R.; Ernvall, R.; Metsänkylä, T. (1993). "Irregular primes and cyclotomic invariants to four million". Math. Comp. 61 (203): 151–153. Bibcode:1993MaCom..61..151B. doi: 10.1090/s0025-5718-1993-1197511-5 .
  4. Irregular primes to two billion, William Hart, David Harvey and Wilson Ong,9 May 2016, arXiv:1605.02398v1
  5. Leo Corry: Number Crunching vs. Number Theory: Computers and FLT, from Kummer to SWAC (1850–1960), and beyond
  6. Jensen, K. L. (1915). "Om talteoretiske Egenskaber ved de Bernoulliske Tal". NYT Tidsskr. Mat. B 26: 73–83. JSTOR   24532219.
  7. Carlitz, L. (1954). "Note on irregular primes" (PDF). Proceedings of the American Mathematical Society. 5 (2). AMS: 329–331. doi: 10.1090/S0002-9939-1954-0061124-6 . ISSN   1088-6826. MR   0061124.
  8. Tauno Metsänkylä (1971). "Note on the distribution of irregular primes". Ann. Acad. Sci. Fenn. Ser. A I. 492. MR   0274403.
  9. Tauno Metsänkylä (1976). "Distribution of irregular prime numbers". Journal für die reine und angewandte Mathematik. 1976 (282): 126–130. doi:10.1515/crll.1976.282.126. S2CID   201061944.
  10. Narkiewicz, Władysław (1990), Elementary and analytic theory of algebraic numbers (2nd, substantially revised and extended ed.), Springer-Verlag; PWN-Polish Scientific Publishers, p.  475, ISBN   3-540-51250-0, Zbl   0717.11045
  11. "The Top Twenty: Euler Irregular primes". primes.utm.edu. Retrieved 2021-07-21.
  12. "Bernoulli and Euler numbers". homes.cerias.purdue.edu. Retrieved 2021-07-21.

Further reading