In number theory, cousin primes are prime numbers that differ by four. [1] Compare this with twin primes, pairs of prime numbers that differ by two, and sexy primes, pairs of prime numbers that differ by six.
The cousin primes (sequences OEIS: A023200 and OEIS: A046132 in OEIS) below 1000 are:
The only prime belonging to two pairs of cousin primes is 7. One of the numbers n, n + 4, n + 8 will always be divisible by 3, so n = 3 is the only case where all three are primes.
An example of a large proven cousin prime pair is (p, p + 4) for
which has 20008 digits. In fact, this is part of a prime triple since p is also a twin prime (because p – 2 is also a proven prime).
As of November 2024 [update] , the largest-known pair of cousin primes was found by S. Batalov and has 51,934 digits. The primes are:
If the first Hardy–Littlewood conjecture holds, then cousin primes have the same asymptotic density as twin primes. An analogue of Brun's constant for twin primes can be defined for cousin primes, called Brun's constant for cousin primes, with the initial term (3, 7) omitted, by the convergent sum: [3]
Using cousin primes up to 242, the value of B4 was estimated by Marek Wolf in 1996 as
This constant should not be confused with Brun's constant for prime quadruplets, which is also denoted B4.
The Skewes number for cousin primes is 5206837 (Tóth (2019)).
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. It is constructed by writing the positive integers in a square spiral and specially marking the prime numbers.
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.
In number theory, Skewes's number is any of several large numbers used by the South African mathematician Stanley Skewes as upper bounds for the smallest natural number for which
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.
In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that
In number theory, a prime quadruplet is a set of four prime numbers of the form {p, p + 2, p + 6, p + 8}. This represents the closest possible grouping of four primes larger than 3, and is the only prime constellation of length 4.
In number theory, the Bateman–Horn conjecture is a statement concerning the frequency of prime numbers among the values of a system of polynomials, named after mathematicians Paul T. Bateman and Roger A. Horn who proposed it in 1962. It provides a vast generalization of such conjectures as the Hardy and Littlewood conjecture on the density of twin primes or their conjecture on primes of the form n2 + 1; it is also a strengthening of Schinzel's hypothesis H.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
In number theory, Brun's theorem states that the sum of the reciprocals of the twin primes converges to a finite value known as Brun's constant, usually denoted by B2. Brun's theorem was proved by Viggo Brun in 1919, and it has historical importance in the introduction of sieve methods.
In combinatorial mathematics, a large set of positive integers
In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states:
A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-st and the n-th prime numbers, i.e.
In number theory, a prime triplet is a set of three prime numbers in which the smallest and largest of the three differ by 6. In particular, the sets must have the form (p, p + 2, p + 6) or (p, p + 4, p + 6). With the exceptions of (2, 3, 5) and (3, 5, 7), this is the closest possible grouping of three prime numbers, since one of every three sequential odd numbers is a multiple of three, and hence not prime (except for 3 itself).
In mathematics, the Mersenne conjectures concern the characterization of a kind of prime numbers called Mersenne primes, meaning prime numbers that are a power of two minus one.
Goldbach's comet is the name given to a plot of the function , the so-called Goldbach function. The function, studied in relation to Goldbach's conjecture, is defined for all even integers to be the number of different ways in which E can be expressed as the sum of two primes. For example, since 22 can be expressed as the sum of two primes in three different ways.
In number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, …), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, …) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers.
In number theory, the first Hardy–Littlewood conjecture states the asymptotic formula for the number of prime k-tuples less than a given magnitude by generalizing the prime number theorem. It was first proposed by G. H. Hardy and John Edensor Littlewood in 1923.
In number theory, Firoozbakht's conjecture is a conjecture about the distribution of prime numbers. It is named after the Iranian mathematician Farideh Firoozbakht who stated it in 1982.