In mathematics, a Cunningham chain is a certain sequence of prime numbers. Cunningham chains are named after mathematician A. J. C. Cunningham. They are also called chains of nearly doubled primes.
A Cunningham chain of the first kind of length n is a sequence of prime numbers (p1, ..., pn) such that pi+1 = 2pi + 1 for all 1 ≤ i < n. (Hence each term of such a chain except the last is a Sophie Germain prime, and each term except the first is a safe prime).
It follows that
or, by setting (the number is not part of the sequence and need not be a prime number), we have
Similarly, a Cunningham chain of the second kind of length n is a sequence of prime numbers (p1, ..., pn) such that pi+1 = 2pi − 1 for all 1 ≤ i < n.
It follows that the general term is
Now, by setting , we have .
Cunningham chains are also sometimes generalized to sequences of prime numbers (p1, ..., pn) such that pi+1 = api + b for all 1 ≤ i ≤ n for fixed coprime integers a and b; the resulting chains are called generalized Cunningham chains.
A Cunningham chain is called complete if it cannot be further extended, i.e., if the previous and the next terms in the chain are not prime numbers.
Examples of complete Cunningham chains of the first kind include these:
Examples of complete Cunningham chains of the second kind include these:
Cunningham chains are now considered useful in cryptographic systems since "they provide two concurrent suitable settings for the ElGamal cryptosystem ... [which] can be implemented in any field where the discrete logarithm problem is difficult." [1]
It follows from Dickson's conjecture and the broader Schinzel's hypothesis H, both widely believed to be true, that for every k there are infinitely many Cunningham chains of length k. There are, however, no known direct methods of generating such chains.
There are computing competitions for the longest Cunningham chain or for the one built up of the largest primes, but unlike the breakthrough of Ben J. Green and Terence Tao – the Green–Tao theorem, that there are arithmetic progressions of primes of arbitrary length – there is no general result known on large Cunningham chains to date.
k | Kind | p1 (starting prime) | Digits | Year | Discoverer |
---|---|---|---|---|---|
1 | 1st / 2nd | 282589933 − 1 | 24862048 | 2018 | Patrick Laroche, GIMPS |
2 | 1st | 2618163402417×21290000 − 1 | 388342 | 2016 | PrimeGrid |
2nd | 213778324725×2561417 + 1 | 169015 | 2023 | Ryan Propper & Serge Batalov | |
3 | 1st | 1128330746865×266439 − 1 | 20013 | 2020 | Michael Paridon |
2nd | 742478255901×240067 + 1 | 12074 | 2016 | Michael Angel & Dirk Augustin | |
4 | 1st | 13720852541×7877# − 1 | 3384 | 2016 | Michael Angel & Dirk Augustin |
2nd | 49325406476×9811# + 1 | 4234 | 2019 | Oscar Östlin | |
5 | 1st | 31017701152691334912×4091# − 1 | 1765 | 2016 | Andrey Balyakin |
2nd | 181439827616655015936×4673# + 1 | 2018 | 2016 | Andrey Balyakin | |
6 | 1st | 2799873605326×2371# - 1 | 1016 | 2015 | Serge Batalov |
2nd | 52992297065385779421184×1531# + 1 | 668 | 2015 | Andrey Balyakin | |
7 | 1st | 82466536397303904×1171# − 1 | 509 | 2016 | Andrey Balyakin |
2nd | 25802590081726373888×1033# + 1 | 453 | 2015 | Andrey Balyakin | |
8 | 1st | 89628063633698570895360×593# − 1 | 265 | 2015 | Andrey Balyakin |
2nd | 2373007846680317952×761# + 1 | 337 | 2016 | Andrey Balyakin | |
9 | 1st | 553374939996823808×593# − 1 | 260 | 2016 | Andrey Balyakin |
2nd | 173129832252242394185728×401# + 1 | 187 | 2015 | Andrey Balyakin | |
10 | 1st | 3696772637099483023015936×311# − 1 | 150 | 2016 | Andrey Balyakin |
2nd | 2044300700000658875613184×311# + 1 | 150 | 2016 | Andrey Balyakin | |
11 | 1st | 73853903764168979088206401473739410396455001112581722569026969860983656346568919×151# − 1 | 140 | 2013 | Primecoin (block 95569) |
2nd | 341841671431409652891648×311# + 1 | 149 | 2016 | Andrey Balyakin | |
12 | 1st | 288320466650346626888267818984974462085357412586437032687304004479168536445314040×83# − 1 | 113 | 2014 | Primecoin (block 558800) |
2nd | 906644189971753846618980352×233# + 1 | 121 | 2015 | Andrey Balyakin | |
13 | 1st | 106680560818292299253267832484567360951928953599522278361651385665522443588804123392×61# − 1 | 107 | 2014 | Primecoin (block 368051) |
2nd | 38249410745534076442242419351233801191635692835712219264661912943040353398995076864×47# + 1 | 101 | 2014 | Primecoin (block 539977) | |
14 | 1st | 4631673892190914134588763508558377441004250662630975370524984655678678526944768×47# − 1 | 97 | 2018 | Primecoin (block 2659167) |
2nd | 5819411283298069803200936040662511327268486153212216998535044251830806354124236416×47# + 1 | 100 | 2014 | Primecoin (block 547276) | |
15 | 1st | 14354792166345299956567113728×43# - 1 | 45 | 2016 | Andrey Balyakin |
2nd | 67040002730422542592×53# + 1 | 40 | 2016 | Andrey Balyakin | |
16 | 1st | 91304653283578934559359 | 23 | 2008 | Jaroslaw Wroblewski |
2nd | 2×1540797425367761006138858881 − 1 | 28 | 2014 | Chermoni & Wroblewski | |
17 | 1st | 2759832934171386593519 | 22 | 2008 | Jaroslaw Wroblewski |
2nd | 1540797425367761006138858881 | 28 | 2014 | Chermoni & Wroblewski | |
18 | 2nd | 658189097608811942204322721 | 27 | 2014 | Chermoni & Wroblewski |
19 | 2nd | 79910197721667870187016101 | 26 | 2014 | Chermoni & Wroblewski |
q# denotes the primorial 2 × 3 × 5 × 7 × ... × q.
As of 2018 [update] , the longest known Cunningham chain of either kind is of length 19, discovered by Jaroslaw Wroblewski in 2014. [2]
Let the odd prime be the first prime of a Cunningham chain of the first kind. The first prime is odd, thus . Since each successive prime in the chain is it follows that . Thus, , , and so forth.
The above property can be informally observed by considering the primes of a chain in base 2. (Note that, as with all bases, multiplying by the base "shifts" the digits to the left; e.g. in decimal we have 314 × 10 = 3140.) When we consider in base 2, we see that, by multiplying by 2, the least significant digit of becomes the secondmost least significant digit of . Because is odd—that is, the least significant digit is 1 in base 2–we know that the secondmost least significant digit of is also 1. And, finally, we can see that will be odd due to the addition of 1 to . In this way, successive primes in a Cunningham chain are essentially shifted left in binary with ones filling in the least significant digits. For example, here is a complete length 6 chain which starts at 141361469:
Binary | Decimal |
---|---|
1000011011010000000100111101 | 141361469 |
10000110110100000001001111011 | 282722939 |
100001101101000000010011110111 | 565445879 |
1000011011010000000100111101111 | 1130891759 |
10000110110100000001001111011111 | 2261783519 |
100001101101000000010011110111111 | 4523567039 |
A similar result holds for Cunningham chains of the second kind. From the observation that and the relation it follows that . In binary notation, the primes in a Cunningham chain of the second kind end with a pattern "0...01", where, for each , the number of zeros in the pattern for is one more than the number of zeros for . As with Cunningham chains of the first kind, the bits left of the pattern shift left by one position with each successive prime.
Similarly, because it follows that . But, by Fermat's little theorem, , so divides (i.e. with ). Thus, no Cunningham chain can be of infinite length. [3]
In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.
The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.
In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion
In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form
This article collects together a variety of proofs of Fermat's little theorem, which states that
The Fermat primality test is a probabilistic test to determine whether a number is a probable prime.
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare.
In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known.
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known. It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.
Modular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie-Hellman Key Exchange and RSA public/private keys.
A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix, or base, and they are all different, this article presents rules and examples only for decimal, or base 10, numbers. Martin Gardner explained and popularized these rules in his September 1962 "Mathematical Games" column in Scientific American.
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence.
In number theory the Agoh–Giuga conjecture on the Bernoulli numbers Bk postulates that p is a prime number if and only if
A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them "pseudoprimes".
In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:
Gauss's lemma in number theory gives a condition for an integer to be a quadratic residue. Although it is not useful computationally, it has theoretical significance, being involved in some proofs of quadratic reciprocity.
In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test. The test is named for a French mathematician, Théophile Pépin.
In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.