Palindromic prime

Last updated
Palindromic prime
Conjectured no. of termsInfinite
First terms 2, 3, 5, 7, 11, 101, 131, 151
Largest known term101888529 - 10944264 - 1
OEIS index
  • A002385
  • Palindromic primes: prime numbers whose decimal expansion is a palindrome

In mathematics, a palindromic prime (sometimes called a palprime [1] ) is a prime number that is also a palindromic number. Palindromicity depends on the base of the number system and its notational conventions, while primality is independent of such concerns. The first few decimal palindromic primes are:

Contents

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, … (sequence A002385 in the OEIS )

Except for 11, all palindromic primes have an odd number of digits, because the divisibility test for 11 tells us that every palindromic number with an even number of digits is a multiple of 11. It is not known if there are infinitely many palindromic primes in base 10. For any base, almost all palindromic numbers are composite, [2] i.e. the ratio between palindromic composites and all palindromes less than n tends to 1.

A large example,

101888529 - 10944264 - 1,

which has 1,888,529 digits, was found on 18 October 2021 by Ryan Propper and Serge Batalov. [3]

Other bases

In binary, the palindromic primes include the Mersenne primes and the Fermat primes. All binary palindromic primes except binary 11 (decimal 3) have an odd number of digits; those palindromes with an even number of digits are divisible by 3. The sequence of binary palindromic primes begins (in binary):

11, 101, 111, 10001, 11111, 1001001, 1101011, 1111111, 100000001, 100111001, 110111011, ... (sequence A117697 in the OEIS )

Property

Due to the superstitious significance of the numbers it contains, the palindromic prime 1000000000000066600000000000001 is known as Belphegor's Prime, named after Belphegor, one of the seven princes of Hell. Belphegor's Prime consists of the number 666, on either side enclosed by thirteen zeroes and a one. Belphegor's Prime is an example of a beastly palindromic prime in which a prime p is palindromic with 666 in the center. Another beastly palindromic prime is 700666007. [4]

Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where q is a palindromic prime with r digits, where r is also a palindromic prime. [5] For example, p = 1011310 + 4661664×105652 +1, which has q = 11311 digits, and 11311 has r = 5 digits. The first (base-10) triply palindromic prime is the 11-digit number 10000500001. It is possible that a triply palindromic prime in base 10 may also be palindromic in another base, such as base 2, but it would be highly remarkable if it were also a triply palindromic prime in that base as well.

See also

Related Research Articles

In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p.

2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number.

A palindromic number is a number that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term palindromic is derived from palindrome, which refers to a word whose spelling is unchanged when its letters are reversed. The first 30 palindromic numbers are:

11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables.

In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

69 is the natural number following 68 and preceding 70. An odd number and a composite number, 69 is divisible by 1, 3, 23 and 69. 69 is a semiprime because it is a natural number that is the product of exactly two prime numbers, and an interprime between the numbers of 67 and 71. Because 69 is not divisible by any square number other than 1, it is categorised as a square-free integer. 69 is also a Blum integer since the two factors of 69 are both Gaussian primes. In number theory, 69 is a deficient number, arithmetic number and a congruent number.

73 (seventy-three) is the natural number following 72 and preceding 74. In English, it is the smallest natural number with twelve letters in its spelled out name.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

2000 is a natural number following 1999 and preceding 2001.

10,000 is the natural number following 9,999 and preceding 10,001.

<span class="mw-page-title-main">1,000,000</span> Natural number

1,000,000, or one thousand thousand, is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione, from mille, "thousand", plus the augmentative suffix -one.

<span class="mw-page-title-main">1,000,000,000</span> Natural number

1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. With a number, "billion" can be abbreviated as b, bil or bn.

100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105.

10,000,000 is the natural number following 9,999,999 and preceding 10,000,001.

100,000,000 is the natural number following 99,999,999 and preceding 100,000,001.

In mathematics, a pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once. For example, 1234567890 is a pandigital number in base 10. The first few pandigital base 10 numbers are given by :

<span class="mw-page-title-main">Strobogrammatic number</span> Numeral ambigram

A strobogrammatic number is a number whose numeral is rotationally symmetric, so that it appears the same when rotated 180 degrees. In other words, the numeral looks the same right-side up and upside down. A strobogrammatic prime is a strobogrammatic number that is also a prime number, i.e., a number that is only divisible by one and itself. It is a type of ambigram, words and numbers that retain their meaning when viewed from a different perspective, such as palindromes.

693 is the natural number following 692 and preceding 694.

20,000 is the natural number that comes after 19,999 and before 20,001.

References

  1. De Geest, Patrick. "World of Palindromic Primes". World!Of Numbers. Retrieved 1 April 2023.
  2. Banks, William D.; Hart, Derrick N.; Sakata, Mayumi (2004). "Almost all palindromes are composite". Mathematical Research Letters. 11 (5–6): 853–868. arXiv: math/0405056 . doi:10.4310/MRL.2004.v11.n6.a10. MR   2106245.
  3. Chris Caldwell, The Top Twenty: Palindrome
  4. See Caldwell, Prime Curios! (CreateSpace, 2009) p. 251, quoted in Wilkinson, Alec (February 2, 2015). "The Pursuit of Beauty". The New Yorker. Retrieved January 29, 2015.
  5. Paulo Ribenboim, The New Book of Prime Number Records