Type of prime
A good prime  is a prime number  whose square  is greater than the product of any two primes at the same number of positions before and after it in the sequence  of primes.
That is, good prime satisfies the inequality  
p n 2 > p n − i ⋅ p n + i {\displaystyle p_{n}^{2}>p_{n-i}\cdot p_{n+i}} for all 1 ≤ i  ≤ n −1, where pk   is the k th prime.
Example: the first primes are 2, 3, 5, 7 and 11. Since for 5 both the conditions
5 2 > 3 ⋅ 7 {\displaystyle 5^{2}>3\cdot 7} 5 2 > 2 ⋅ 11 {\displaystyle 5^{2}>2\cdot 11} are fulfilled, 5 is a good prime.
There are infinitely many good primes. [ 1]      The first good primes are:
 5 , 11 , 17 , 29 , 37 , 41 , 53 , 59 , 67 , 71 , 97 , 101 , 127 , 149 , 179 , 191 , 223 , 227 , 251 , 257 , 269 , 307 , 311 , 331 , 347 , 419 , 431 , 541 , 557 , 563 , 569 , 587 , 593 , 599 , 641 , 727 , 733 , 739 , 809 , 821 , 853 , 929 , 937 , 967  (sequence   A028388    in the   OEIS  ) . An alternative version takes only i  = 1 in the definition. With that there are more good primes:
 5 , 11 , 17 , 29 , 37 , 41 , 53 , 59 , 67 , 71 , 79 , 97 , 101 , 107 , 127 , 137 , 149 , 157 , 163 , 173 , 179 , 191 , 197 , 211 , 223 , 227 , 239 , 251 , 257 , 263 , 269 , 277 , 281 , 307 , 311 , 331 , 347 , 367 , 373 , 379 , 397 , 419 , 431 , 439 , 457 , 461 , 479 , 487 , 499 , 521 , 541 , 557 , 563 , 569 , 587 , 593 , 599 , 607 , 613 , 617 , 631 , 641 , 653 , 659 , 673 , 701 , 719 , 727 , 733 , 739 , 751 , 757 , 769 , 787 , 809 , 821 , 827 , 853 , 857 , 877 , 881 , 907 , 929 , 937 , 947 , 967 , 977 , 991  (sequence   A046869    in the   OEIS  ) . This page is based on this 
Wikipedia article  Text is available under the 
CC BY-SA 4.0  license; additional terms may apply.
Images, videos and audio are available under their respective licenses.