In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.
As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x. Then the theorem states that
Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation.
Formally, given functions f (x) and g(x), we define a binary relation if and only if ( de Bruijn 1981 , §1.4)
The symbol ~ is the tilde. The relation is an equivalence relation on the set of functions of x; the functions f and g are said to be asymptotically equivalent. The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers.
The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ 0, |x| → 0. The way of passing to the limit is often not stated explicitly, if it is clear from the context.
Although the above definition is common in the literature, it is problematic if g(x) is zero infinitely often as x goes to the limiting value. For that reason, some authors use an alternative definition. The alternative definition, in little-o notation, is that f ~ g if and only if
This definition is equivalent to the prior definition if g(x) is not zero in some neighbourhood of the limiting value. [1] [2]
If and , then, under some mild conditions,[ further explanation needed ] the following hold:
Such properties allow asymptotically equivalent functions to be freely exchanged in many algebraic expressions.
An asymptotic expansion of a function f(x) is in practice an expression of that function in terms of a series, the partial sums of which do not necessarily converge, but such that taking any initial partial sum provides an asymptotic formula for f. The idea is that successive terms provide an increasingly accurate description of the order of growth of f.
In symbols, it means we have but also and for each fixed k. In view of the definition of the symbol, the last equation means in the little o notation, i.e., is much smaller than
The relation takes its full meaning if for all k, which means the form an asymptotic scale. In that case, some authors may abusively write to denote the statement One should however be careful that this is not a standard use of the symbol, and that it does not correspond to the definition given in § Definition.
In the present situation, this relation actually follows from combining steps k and k−1; by subtracting from one gets i.e.
In case the asymptotic expansion does not converge, for any particular value of the argument there will be a particular partial sum which provides the best approximation and adding additional terms will decrease the accuracy. This optimal partial sum will usually have more terms as the argument approaches the limit value.
Asymptotic expansions often occur when an ordinary series is used in a formal expression that forces the taking of values outside of its domain of convergence. For example, we might start with the ordinary series
The expression on the left is valid on the entire complex plane , while the right hand side converges only for . Multiplying by and integrating both sides yields
The integral on the left hand side can be expressed in terms of the exponential integral. The integral on the right hand side, after the substitution , may be recognized as the gamma function. Evaluating both, one obtains the asymptotic expansion
Here, the right hand side is clearly not convergent for any non-zero value of t. However, by keeping t small, and truncating the series on the right to a finite number of terms, one may obtain a fairly good approximation to the value of . Substituting and noting that results in the asymptotic expansion given earlier in this article.
In mathematical statistics, an asymptotic distribution is a hypothetical distribution that is in a sense the "limiting" distribution of a sequence of distributions. A distribution is an ordered set of random variables Zi for i = 1, …, n, for some positive integer n. An asymptotic distribution allows i to range without bound, that is, n is infinite.
A special case of an asymptotic distribution is when the late entries go to zero—that is, the Zi go to 0 as i goes to infinity. Some instances of "asymptotic distribution" refer only to this special case.
This is based on the notion of an asymptotic function which cleanly approaches a constant value (the asymptote) as the independent variable goes to infinity; "clean" in this sense meaning that for any desired closeness epsilon there is some value of the independent variable after which the function never differs from the constant by more than epsilon.
An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation y becomes arbitrarily small in magnitude as x increases.
Asymptotic analysis is used in several mathematical sciences. In statistics, asymptotic theory provides limiting approximations of the probability distribution of sample statistics, such as the likelihood ratio statistic and the expected value of the deviance. Asymptotic theory does not provide a method of evaluating the finite-sample distributions of sample statistics, however. Non-asymptotic bounds are provided by methods of approximation theory.
Examples of applications are the following.
Asymptotic analysis is a key tool for exploring the ordinary and partial differential equations which arise in the mathematical modelling of real-world phenomena. [3] An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow. In many cases, the asymptotic expansion is in power of a small parameter, ε: in the boundary layer case, this is the nondimensional ratio of the boundary layer thickness to a typical length scale of the problem. Indeed, applications of asymptotic analysis in mathematical modelling often [3] center around a nondimensional parameter which has been shown, or assumed, to be small through a consideration of the scales of the problem at hand.
Asymptotic expansions typically arise in the approximation of certain integrals (Laplace's method, saddle-point method, method of steepest descent) or in the approximation of probability distributions (Edgeworth series). The Feynman graphs in quantum field theory are another example of asymptotic expansions which often do not converge.
De Bruijn illustrates the use of asymptotics in the following dialog between Dr. N.A., a Numerical Analyst, and Dr. A.A., an Asymptotic Analyst:
N.A.: I want to evaluate my function for large values of , with a relative error of at most 1%.
A.A.: .
N.A.: I am sorry, I don't understand.
A.A.:
N.A.: But my value of is only 100.
A.A.: Why did you not say so? My evaluations give
N.A.: This is no news to me. I know already that .
A.A.: I can gain a little on some of my estimates. Now I find that
N.A.: I asked for 1%, not for 20%.
A.A.: It is almost the best thing I possibly can get. Why don't you take larger values of ?
N.A.: !!! I think it's better to ask my electronic computing machine.
Machine: f(100) = 0.01137 42259 34008 67153
A.A.: Haven't I told you so? My estimate of 20% was not far off from the 14% of the real error.
N.A.: !!! . . . !
Some days later, Miss N.A. wants to know the value of f(1000), but her machine would take a month of computation to give the answer. She returns to her Asymptotic Colleague, and gets a fully satisfactory reply. [4]
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value .
A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
In mathematics, the error function, often denoted by erf, is a function defined as:
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.
In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation known as the Airy equation or the Stokes equation.
In mathematics, the Dawson function or Dawson integral (named after H. G. Dawson) is the one-sided Fourier–Laplace sine transform of the Gaussian function.
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to functions given by integration against a rapidly-varying complex exponential.
In probability theory, the Rice distribution or Rician distribution is the probability distribution of the magnitude of a circularly-symmetric bivariate normal random variable, possibly with non-zero mean (noncentral). It was named after Stephen O. Rice (1907–1986).
In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to special functions like the K-function and the Barnes G-function. The constant appears in a number of sums and integrals, especially those involving gamma functions and zeta functions. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.
In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by Jackson (1905). It is given by when , and if . Here is the infinite q-Pochhammer symbol. The -gamma function satisfies the functional equation In addition, the -gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey .
For non-negative integers n, where is the q-factorial function. Thus the -gamma function can be considered as an extension of the q-factorial function to the real numbers.