In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.
No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument. The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument.
Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.
For a positive integer n, p(n) is the number of distinct ways of representing n as a sum of positive integers. For the purposes of this definition, the order of the terms in the sum is irrelevant: two sums with the same terms in a different order are not considered to be distinct.
By convention p(0) = 1, as there is one way (the empty sum) of representing zero as a sum of positive integers. Furthermore p(n) = 0 when n is negative.
The first few values of the partition function, starting with p(0) = 1, are:
Some exact values of p(n) for larger values of n include: [1]
The generating function for p(n) is given by [2] The equality between the products on the first and second lines of this formula is obtained by expanding each factor into the geometric series To see that the expanded product equals the sum on the first line, apply the distributive law to the product. This expands the product into a sum of monomials of the form for some sequence of coefficients , only finitely many of which can be non-zero. The exponent of the term is , and this sum can be interpreted as a representation of as a partition into copies of each number . Therefore, the number of terms of the product that have exponent is exactly , the same as the coefficient of in the sum on the left. Therefore, the sum equals the product.
The function that appears in the denominator in the third and fourth lines of the formula is the Euler function. The equality between the product on the first line and the formulas in the third and fourth lines is Euler's pentagonal number theorem. The exponents of in these lines are the pentagonal numbers for (generalized somewhat from the usual pentagonal numbers, which come from the same formula for the positive values of ). The pattern of positive and negative signs in the third line comes from the term in the fourth line: even choices of produce positive terms, and odd choices produce negative terms.
More generally, the generating function for the partitions of into numbers selected from a set of positive integers can be found by taking only those terms in the first product for which . This result is due to Leonhard Euler. [3] The formulation of Euler's generating function is a special case of a -Pochhammer symbol and is similar to the product formulation of many modular forms, and specifically the Dedekind eta function.
The same sequence of pentagonal numbers appears in a recurrence relation for the partition function: [4] As base cases, is taken to equal , and is taken to be zero for negative . Although the sum on the right side appears infinite, it has only finitely many nonzero terms, coming from the nonzero values of in the range The recurrence relation can also be written in the equivalent form
Another recurrence relation for can be given in terms of the sum of divisors function σ: [5] If denotes the number of partitions of with no repeated parts then it follows by splitting each partition into its even parts and odd parts, and dividing the even parts by two, that [6]
Srinivasa Ramanujan is credited with discovering that the partition function has nontrivial patterns in modular arithmetic. For instance the number of partitions is divisible by five whenever the decimal representation of ends in the digit 4 or 9, as expressed by the congruence [7] For instance, the number of partitions for the integer 4 is 5. For the integer 9, the number of partitions is 30; for 14 there are 135 partitions. This congruence is implied by the more general identity also by Ramanujan, [8] [9] where the notation denotes the product defined by A short proof of this result can be obtained from the partition function generating function.
Ramanujan also discovered congruences modulo 7 and 11: [7] The first one comes from Ramanujan's identity [9]
Since 5, 7, and 11 are consecutive primes, one might think that there would be an analogous congruence for the next prime 13, for some a. However, there is no congruence of the form for any prime b other than 5, 7, or 11. [10] Instead, to obtain a congruence, the argument of should take the form for some . In the 1960s, A. O. L. Atkin of the University of Illinois at Chicago discovered additional congruences of this form for small prime moduli. For example:
KenOno ( 2000 ) proved that there are such congruences for every prime modulus greater than 3. Later, Ahlgren & Ono (2001) showed there are partition congruences modulo every integer coprime to 6. [11] [12]
Approximation formulas exist that are faster to calculate than the exact formula given above.
An asymptotic expression for p(n) is given by
This asymptotic formula was first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J. V. Uspensky in 1920. Considering , the asymptotic formula gives about , reasonably close to the exact answer given above (1.415% larger than the true value).
Hardy and Ramanujan obtained an asymptotic expansion with this approximation as the first term: [13] where Here, the notation means that the sum is taken only over the values of that are relatively prime to . The function is a Dedekind sum.
The error after terms is of the order of the next term, and may be taken to be of the order of . As an example, Hardy and Ramanujan showed that is the nearest integer to the sum of the first terms of the series. [13]
In 1937, Hans Rademacher was able to improve on Hardy and Ramanujan's results by providing a convergent series expression for . It is [14] [15]
The proof of Rademacher's formula involves Ford circles, Farey sequences, modular symmetry and the Dedekind eta function.
It may be shown that the th term of Rademacher's series is of the order so that the first term gives the Hardy–Ramanujan asymptotic approximation. PaulErdős ( 1942 ) published an elementary proof of the asymptotic formula for . [16] [17]
Techniques for implementing the Hardy–Ramanujan–Rademacher formula efficiently on a computer are discussed by Johansson (2012), who shows that can be computed in time for any . This is near-optimal in that it matches the number of digits of the result. [18] The largest value of the partition function computed exactly is , which has slightly more than 11 billion digits. [19]
A partition in which no part occurs more than once is called strict, or is said to be a partition into distinct parts. The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
n | q(n) | Strict partitions | Partitions with only odd parts |
---|---|---|---|
0 | 1 | () empty partition | () empty partition |
1 | 1 | 1 | 1 |
2 | 1 | 2 | 1+1 |
3 | 2 | 1+2, 3 | 1+1+1, 3 |
4 | 2 | 1+3, 4 | 1+1+1+1, 1+3 |
5 | 3 | 2+3, 1+4, 5 | 1+1+1+1+1, 1+1+3, 5 |
6 | 4 | 1+2+3, 2+4, 1+5, 6 | 1+1+1+1+1+1, 1+1+1+3, 3+3, 1+5 |
7 | 5 | 1+2+4, 3+4, 2+5, 1+6, 7 | 1+1+1+1+1+1+1, 1+1+1+1+3, 1+3+3, 1+1+5, 7 |
8 | 6 | 1+3+4, 1+2+5, 3+5, 2+6, 1+7, 8 | 1+1+1+1+1+1+1+1, 1+1+1+1+1+3, 1+1+3+3, 1+1+1+5, 3+5, 1+7 |
9 | 8 | 2+3+4, 1+3+5, 4+5, 1+2+6, 3+6, 2+7, 1+8, 9 | 1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+3, 1+1+1+3+3, 3+3+3, 1+1+1+1+5, 1+3+5, 1+1+7, 9 |
The generating function for the numbers q(n) is given by a simple infinite product: [21] where the notation represents the Pochhammer symbol From this formula, one may easily obtain the first few terms (sequence A000009 in the OEIS ): This series may also be written in terms of theta functions as where and In comparison, the generating function of the regular partition numbers p(n) has this identity with respect to the theta function:
Following identity is valid for the Pochhammer products:
From this identity follows that formula:
Therefore those two formulas are valid for the synthesis of the number sequence p(n):
In the following, two examples are accurately executed:
More generally, it is possible to consider partitions restricted to only elements of a subset A of the natural numbers (for example a restriction on the maximum value of the parts), or with a restriction on the number of parts or the maximum difference between parts. Each particular restriction gives rise to an associated partition function with specific properties. Some common examples are given below.
Two important examples are the partitions restricted to only odd integer parts or only even integer parts, with the corresponding partition functions often denoted and .
A theorem from Euler shows that the number of strict partitions is equal to the number of partitions with only odd parts: for all n, . This is generalized as Glaisher's theorem, which states that the number of partitions with no more than d-1 repetitions of any part is equal to the number of partitions with no part divisible by d.
If we denote the number of partitions of n in at most M parts, with each part smaller or equal to N, then the generating function of is the following Gaussian binomial coefficient:
Some general results on the asymptotic properties of restricted partition functions are known. If pA(n) is the partition function of partitions restricted to only elements of a subset A of the natural numbers, then:
If A possesses positive natural density α then , with
and conversely if this asymptotic property holds for pA(n) then A has natural density α. [22] This result was stated, with a sketch of proof, by Erdős in 1942. [16] [23]
If A is a finite set, this analysis does not apply (the density of a finite set is zero). If A has k elements whose greatest common divisor is 1, then [24]
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.
In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form, by some expression involving operations on the formal series.
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space.
In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for special linear group SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function that is holomorphic away from a simple pole at the cusp such that
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.
In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers, and were subsequently rediscovered by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof. Issai Schur independently rediscovered and proved the identities.
In mathematics, the Chebyshev function is either a scalarising function (Tchebycheff function) or one of two related functions. The first Chebyshev functionϑ (x) or θ (x) is given by
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan:
Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.
In number theory and combinatorics, the rank of an integer partition is a certain number associated with the partition. In fact at least two different definitions of rank appear in the literature. The first definition, with which most of this article is concerned, is that the rank of a partition is the number obtained by subtracting the number of parts in the partition from the largest part in the partition. The concept was introduced by Freeman Dyson in a paper published in the journal Eureka. It was presented in the context of a study of certain congruence properties of the partition function discovered by the Indian mathematical genius Srinivasa Ramanujan. A different concept, sharing the same name, is used in combinatorics, where the rank is taken to be the size of the Durfee square of the partition.
{{cite web}}
: CS1 maint: overridden setting (link)