Ford circle

Last updated
Ford circles for p/q with q from 1 to 20. Circles with q <= 10 are labelled as
.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
p/q and color-coded according to q. Each circle is tangent to the base line and its neighboring circles. Irreducible fractions with the same denominator have circles of the same size. Ford circles colour.svg
Ford circles for p/q with q from 1 to 20. Circles with q ≤ 10 are labelled as p/q and color-coded according to q. Each circle is tangent to the base line and its neighboring circles. Irreducible fractions with the same denominator have circles of the same size.

In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number , expressed in lowest terms, there is a Ford circle whose center is at the point and whose radius is . It is tangent to the -axis at its bottom point, . The two Ford circles for rational numbers and (both in lowest terms) are tangent circles when and otherwise these two circles are disjoint. [1]

Contents

History

Ford circles are a special case of mutually tangent circles; the base line can be thought of as a circle with infinite radius. Systems of mutually tangent circles were studied by Apollonius of Perga, after whom the problem of Apollonius and the Apollonian gasket are named. [2] In the 17th century René Descartes discovered Descartes' theorem, a relationship between the reciprocals of the radii of mutually tangent circles. [2]

Ford circles also appear in the Sangaku (geometrical puzzles) of Japanese mathematics. A typical problem, which is presented on an 1824 tablet in the Gunma Prefecture, covers the relationship of three touching circles with a common tangent. Given the size of the two outer large circles, what is the size of the small circle between them? The answer is equivalent to a Ford circle: [3]

Ford circles are named after the American mathematician Lester R. Ford, Sr., who wrote about them in 1938. [1]

Properties

Comparison of Ford circles and a Farey diagram with circular arcs for n from 1 to 9. Note that each arc intersects its corresponding circles at right angles. In the SVG image, hover over a circle or curve to highlight it and its terms. Comparison Ford circles Farey diagram.svg
Comparison of Ford circles and a Farey diagram with circular arcs for n from 1 to 9. Note that each arc intersects its corresponding circles at right angles. In the SVG image, hover over a circle or curve to highlight it and its terms.

The Ford circle associated with the fraction is denoted by or There is a Ford circle associated with every rational number. In addition, the line is counted as a Ford circle – it can be thought of as the Ford circle associated with infinity, which is the case

Two different Ford circles are either disjoint or tangent to one another. No two interiors of Ford circles intersect, even though there is a Ford circle tangent to the x-axis at each point on it with rational coordinates. If is between 0 and 1, the Ford circles that are tangent to can be described variously as

  1. the circles where [1]
  2. the circles associated with the fractions that are the neighbors of in some Farey sequence, [1] or
  3. the circles where is the next larger or the next smaller ancestor to in the Stern–Brocot tree or where is the next larger or next smaller ancestor to . [1]

If and are two tangent Ford circles, then the circle through and (the x-coordinates of the centers of the Ford circles) and that is perpendicular to the -axis (whose center is on the x-axis) also passes through the point where the two circles are tangent to one another.

The centers of the Ford circles constitute a discrete (and hence countable) subset of the plane, whose closure is the real axis - an uncountable set.

Ford circles can also be thought of as curves in the complex plane. The modular group of transformations of the complex plane maps Ford circles to other Ford circles. [1]

Ford circles are a sub-set of the circles in the Apollonian gasket generated by the lines and and the circle [4]

By interpreting the upper half of the complex plane as a model of the hyperbolic plane (the Poincaré half-plane model), Ford circles can be interpreted as horocycles. In hyperbolic geometry any two horocycles are congruent. When these horocycles are circumscribed by apeirogons they tile the hyperbolic plane with an order-3 apeirogonal tiling.

Total area of Ford circles

There is a link between the area of Ford circles, Euler's totient function the Riemann zeta function and Apéry's constant [5] As no two Ford circles intersect, it follows immediately that the total area of the Ford circles

is less than 1. In fact the total area of these Ford circles is given by a convergent sum, which can be evaluated. From the definition, the area is

Simplifying this expression gives

where the last equality reflects the Dirichlet generating function for Euler's totient function Since this finally becomes

Note that as a matter of convention, the previous calculations excluded the circle of radius corresponding to the fraction . It includes the complete circle for , half of which lies outside the unit interval, hence the sum is still the fraction of the unit square covered by Ford circles.

Ford spheres (3D)

Ford spheres above the complex domain Ford-Kugeln.png
Ford spheres above the complex domain

The concept of Ford circles can be generalized from the rational numbers to the Gaussian rationals, giving Ford spheres. In this construction, the complex numbers are embedded as a plane in a three-dimensional Euclidean space, and for each Gaussian rational point in this plane one constructs a sphere tangent to the plane at that point. For a Gaussian rational represented in lowest terms as , the diameter of this sphere should be where represents the complex conjugate of . The resulting spheres are tangent for pairs of Gaussian rationals and with , and otherwise they do not intersect each other. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Farey sequence</span> Increasing sequence of reduced fractions

In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.

In mathematics, a Dirichlet L-series is a function of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis. They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. That is, the number

In complex analysis, a Schwarz–Christoffel mapping is a conformal map of the upper half-plane or the complex unit disk onto the interior of a simple polygon. Such a map is guaranteed to exist by the Riemann mapping theorem ; the Schwarz–Christoffel formula provides an explicit construction. They were introduced independently by Elwin Christoffel in 1867 and Hermann Schwarz in 1869.

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

<span class="mw-page-title-main">Axial multipole moments</span>

Axial multipole moments are a series expansion of the electric potential of a charge distribution localized close to the origin along one Cartesian axis, denoted here as the z-axis. However, the axial multipole expansion can also be applied to any potential or field that varies inversely with the distance to the source, i.e., as . For clarity, we first illustrate the expansion for a single point charge, then generalize to an arbitrary charge density localized to the z-axis.

In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

<span class="mw-page-title-main">Wrapped Cauchy distribution</span>

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.

References

  1. 1 2 3 4 5 6 Ford, L. R. (1938), "Fractions", The American Mathematical Monthly , 45 (9): 586–601, doi:10.2307/2302799, JSTOR   2302799, MR   1524411 .
  2. 1 2 Coxeter, H. S. M. (1968), "The problem of Apollonius", The American Mathematical Monthly , 75 (1): 5–15, doi:10.2307/2315097, JSTOR   2315097, MR   0230204 .
  3. Fukagawa, Hidetosi; Pedoe, Dan (1989), Japanese temple geometry problems, Winnipeg, MB: Charles Babbage Research Centre, ISBN   0-919611-21-4, MR   1044556 .
  4. Graham, Ronald L.; Lagarias, Jeffrey C.; Mallows, Colin L.; Wilks, Allan R.; Yan, Catherine H. (2003), "Apollonian circle packings: number theory", Journal of Number Theory, 100 (1): 1–45, arXiv: math.NT/0009113 , doi:10.1016/S0022-314X(03)00015-5, MR   1971245, S2CID   16607718 .
  5. Marszalek, Wieslaw (2012), "Circuits with oscillatory hierarchical Farey sequences and fractal properties", Circuits, Systems and Signal Processing, 31 (4): 1279–1296, doi:10.1007/s00034-012-9392-3, S2CID   5447881 .
  6. Pickover, Clifford A. (2001), "Chapter 103. Beauty and Gaussian Rational Numbers", Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford University Press, pp. 243–246, ISBN   9780195348002 .
  7. Northshield, Sam (2015), Ford Circles and Spheres, arXiv: 1503.00813 , Bibcode:2015arXiv150300813N .