Tangent circles

Last updated

In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency: internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the use of materials.

Contents

Two given circles

Ellipse and hyperbola as the locus of centers of circles tangent to two given intersecting circles. Locus of centers of circles tangent to two circles.gif
Ellipse and hyperbola as the locus of centers of circles tangent to two given intersecting circles.

Two circles are mutually and externally tangent if distance between their centers is equal to the sum of their radii [1]

Steiner chains

Pappus chains

Three given circles: Apollonius' problem

Apollonius' problem is to construct circles that are tangent to three given circles.

Apollonian gasket

If a circle is iteratively inscribed into the interstitial curved triangles between three mutually tangent circles, an Apollonian gasket results, one of the earliest fractals described in print.

Three mutually tangent circles of radii in ratios 4:4:1 yield a 3-4-5 Pythagorean triple triangle Pythagorean triple kissing circles.svg
Three mutually tangent circles of radii in ratios 4:4:1 yield a 3-4-5 Pythagorean triple triangle

Malfatti's problem

Malfatti's problem is to carve three cylinders from a triangular block of marble, using as much of the marble as possible. In 1803, Gian Francesco Malfatti conjectured that the solution would be obtained by inscribing three mutually tangent circles into the triangle (a problem that had previously been considered by Japanese mathematician Ajima Naonobu); these circles are now known as the Malfatti circles, although the conjecture has been proven to be false.

Six circles theorem

A chain of six circles can be drawn such that each circle is tangent to two sides of a given triangle and also to the preceding circle in the chain. The chain closes; the sixth circle is always tangent to the first circle.

Generalizations

Problems involving tangent circles are often generalized to spheres. For example, the Fermat problem of finding sphere(s) tangent to four given spheres is a generalization of Apollonius' problem, whereas Soddy's hexlet is a generalization of a Steiner chain.

See also

Related Research Articles

Circle Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre; equivalently it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

Sphere Geometrical object that is the surface of a ball

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

Altitude (triangle) Line segment in a triangle l

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

Power center (geometry)

In geometry, the power center of three circles, also called the radical center, is the intersection point of the three radical axes of the pairs of circles. If the radical center lies outside of all three circles, then it is the center of the unique circle that intersects the three given circles orthogonally; the construction of this orthogonal circle corresponds to Monge's problem. This is a special case of the three conics theorem.

Feuerbach point Point where the incircle and nine-point circle of a triangle are tangent

In the geometry of triangles, the incircle and nine-point circle of a triangle are internally tangent to each other at the Feuerbach point of the triangle. The Feuerbach point is a triangle center, meaning that its definition does not depend on the placement and scale of the triangle. It is listed as X(11) in Clark Kimberling's Encyclopedia of Triangle Centers, and is named after Karl Wilhelm Feuerbach.

Malfatti circles Three tangent circles in a triangle

In geometry, the Malfatti circles are three circles inside a given triangle such that each circle is tangent to the other two and to two sides of the triangle. They are named after Gian Francesco Malfatti, who made early studies of the problem of constructing these circles in the mistaken belief that they would have the largest possible total area of any three disjoint circles within the triangle.

Giovanni Francesco Giuseppe Malfatti, also known as Gian Francesco or Gianfrancesco was an Italian mathematician. He was born in Ala, Trentino, Italy and died in Ferrara.

Lines in a plane or higher-dimensional space are said to be concurrent if they intersect at a single point. They are in contrast to parallel lines.

Problem of Apollonius Construct circles that are tangent to three given circles in a plane

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

Soddys hexlet

In geometry, Soddy's hexlet is a chain of six spheres, each of which is tangent to both of its neighbors and also to three mutually tangent given spheres. In Figure 1, the three spheres are the red inner sphere and two spheres above and below the plane the centers of the hexlet spheres lie on. In addition, the hexlet spheres are tangent to a fourth sphere, which is not tangent to the three others.

Johnson circles

In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections : the common point H that they all share, and for each of the three pairs of circles one more intersection point. If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

Bicentric polygon

In geometry, a bicentric polygon is a tangential polygon which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon. All triangles and all regular polygons are bicentric. On the other hand, a rectangle with unequal sides is not bicentric, because no circle can be tangent to all four sides.

Circle packing theorem Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

Steiner chain

In geometry, a Steiner chain is a set of n circles, all of which are tangent to two given non-intersecting circles, where n is finite and each circle in the chain is tangent to the previous and next circles in the chain. In the usual closed Steiner chains, the first and last (nth) circles are also tangent to each other; by contrast, in open Steiner chains, they need not be. The given circles α and β do not intersect, but otherwise are unconstrained; the smaller circle may lie completely inside or outside of the larger circle. In these cases, the centers of Steiner-chain circles lie on an ellipse or a hyperbola, respectively.

Six circles theorem Relates to a chain of six circles together with a triangle

In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense that the sixth circle is always tangent to the first circle. It is assumed in this construction that all circles lie within the triangle, and all points of tangency lie on the sides of the triangle. If the problem is generalized to allow circles that may not be within the triangle, and points of tangency on the lines extending the sides of the triangle, then the sequence of circles eventually reaches a periodic sequence of six circles, but may take arbitrarily many steps to reach this periodicity.

Miquels theorem Concerns 3 circles through triples of points on the vertices and sides of a triangle

Miquel's theorem is a result in geometry, named after Auguste Miquel, concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sides. It is one of several results concerning circles in Euclidean geometry due to Miquel, whose work was published in Liouville's newly founded journal Journal de mathématiques pures et appliquées.

Pole and polar

In geometry, the pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section.

Tangent-secant theorem Relates line segments created by a secant with a tangent line

The tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's Elements.

A Treatise on the Circle and the Sphere is a mathematics book on circles, spheres, and inversive geometry. It was written by Julian Coolidge, and published by the Clarendon Press in 1916. The Chelsea Publishing Company published a corrected reprint in 1971, and after the American Mathematical Society acquired Chelsea Publishing it was reprinted again in 1997.

References