Arbelos

Last updated
An arbelos (grey region) Arbelos.svg
An arbelos (grey region)
Arbelos sculpture in Kaatsheuvel, Netherlands Arbelos sculpture Netherlands 1.jpg
Arbelos sculpture in Kaatsheuvel, Netherlands

In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line (the baseline) that contains their diameters. [1]

Contents

The earliest known reference to this figure is in Archimedes's Book of Lemmas , where some of its mathematical properties are stated as Propositions 4 through 8. [2] The word arbelos is Greek for 'shoemaker's knife'. The figure is closely related to the Pappus chain.

Properties

Two of the semicircles are necessarily concave, with arbitrary diameters a and b; the third semicircle is convex, with diameter a+b. [1] Let the diameters of the smaller semicircles be BA and AC; then the diameter of the larger semircle is BC.

Some special points on the arbelos. Arbelos diagram with points marked.svg
Some special points on the arbelos.

Area

Let H be the intersection of the larger semicircle with the line perpendicular to BC at A. Then the area of the arbelos is equal to the area of a circle with diameter HA.

Proof: For the proof, reflect the arbelos over the line through the points B and C, and observe that twice the area of the arbelos is what remains when the areas of the two smaller circles (with diameters BA, AC) are subtracted from the area of the large circle (with diameter BC). Since the area of a circle is proportional to the square of the diameter (Euclid's Elements, Book XII, Proposition 2; we do not need to know that the constant of proportionality is π/4), the problem reduces to showing that . The length |BC| equals the sum of the lengths |BA| and |AC|, so this equation simplifies algebraically to the statement that . Thus the claim is that the length of the segment AH is the geometric mean of the lengths of the segments BA and AC. Now (see Figure) the triangle BHC, being inscribed in the semicircle, has a right angle at the point H (Euclid, Book III, Proposition 31), and consequently |HA| is indeed a "mean proportional" between |BA| and |AC| (Euclid, Book VI, Proposition 8, Porism). This proof approximates the ancient Greek argument; Harold P. Boas cites a paper of Roger B. Nelsen [3] who implemented the idea as the following proof without words. [4]

Arbelos proof2.svg

Rectangle

Let D and E be the points where the segments BH and CH intersect the semicircles AB and AC, respectively. The quadrilateral ADHE is actually a rectangle.

Proof: ∠BDA, ∠BHC, and ∠AEC are right angles because they are inscribed in semicircles (by Thales's theorem). The quadrilateral ADHE therefore has three right angles, so it is a rectangle. Q.E.D.

Tangents

The line DE is tangent to semicircle BA at D and semicircle AC at E.

Proof: Since ADHE is a rectangle, the diagonals AH and DE have equal length and bisect each other at their intersection O. Therefore, . Also, since OA is perpendicular to the diameters BA and AC, OA is tangent to both semicircles at the point A. Finally, because the two tangents to a circle from any given exterior point have equal length, it follows that the other tangents from O to semicircles BA and AC are OD and OE respectively.

Archimedes' circles

The altitude AH divides the arbelos into two regions, each bounded by a semicircle, a straight line segment, and an arc of the outer semicircle. The circles inscribed in each of these regions, known as the Archimedes' circles of the arbelos, have the same size.

Variations and generalisations

example of an f-belos F-belos.svg
example of an f-belos

The parbelos is a figure similar to the arbelos, that uses parabola segments instead of half circles. A generalisation comprising both arbelos and parbelos is the f-belos, which uses a certain type of similar differentiable functions. [5]

In the Poincaré half-plane model of the hyperbolic plane, an arbelos models an ideal triangle.

Etymology

The type of shoemaker's knife that gave its name to the figure Arbelos Shoemakers Knife.jpg
The type of shoemaker's knife that gave its name to the figure

The name arbelos comes from Greek ἡ ἄρβηλος he árbēlos or ἄρβυλος árbylos, meaning "shoemaker's knife", a knife used by cobblers from antiquity to the current day, whose blade is said to resemble the geometric figure.

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

<span class="mw-page-title-main">Sphere</span> Set of points equidistant from a center

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Apollonius of Perga</span> Ancient Greek geometer and astronomer (c. 240–190 BC)

Apollonius of Perga was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.

<span class="mw-page-title-main">Thales's theorem</span> Angle formed by a point on a circle and the 2 ends of a diameter is a right angle

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Semicircle</span> Geometric shape

In mathematics, a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180°. It only has one line of symmetry.

The method of exhaustion is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area between the nth polygon and the containing shape will become arbitrarily small as n becomes large. As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically "exhausted" by the lower bound areas successively established by the sequence members.

<span class="mw-page-title-main">Tomahawk (geometry)</span> Tool for trisecting angles

The tomahawk is a tool in geometry for angle trisection, the problem of splitting an angle into three equal parts. The boundaries of its shape include a semicircle and two line segments, arranged in a way that resembles a tomahawk, a Native American axe. The same tool has also been called the shoemaker's knife, but that name is more commonly used in geometry to refer to a different shape, the arbelos.

<span class="mw-page-title-main">Timeline of ancient Greek mathematicians</span>

This is a timeline of mathematicians in ancient Greece.

<span class="mw-page-title-main">Pappus chain</span> Ring of circles between two tangent circles

In geometry, the Pappus chain is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.

<span class="mw-page-title-main">Bankoff circle</span>

In geometry, the Bankoff circle or Bankoff triplet circle is a certain Archimedean circle that can be constructed from an arbelos; an Archimedean circle is any circle with area equal to each of Archimedes' twin circles. The Bankoff circle was first constructed by Leon Bankoff in 1974.

<span class="mw-page-title-main">Twin circles</span>

In geometry, the twin circles are two special circles associated with an arbelos. An arbelos is determined by three collinear points A, B, and C, and is the curvilinear triangular region between the three semicircles that have AB, BC, and AC as their diameters. If the arbelos is partitioned into two smaller regions by a line segment through the middle point of A, B, and C, perpendicular to line ABC, then each of the two twin circles lies within one of these two regions, tangent to its two semicircular sides and to the splitting segment.

<span class="mw-page-title-main">Archimedes' quadruplets</span>

In geometry, Archimedes' quadruplets are four congruent circles associated with an arbelos. Introduced by Frank Power in the summer of 1998, each have the same area as Archimedes' twin circles, making them Archimedean circles.

<span class="mw-page-title-main">Salinon</span> Geometric shape

The salinon is a geometrical figure that consists of four semicircles. It was first introduced in the Book of Lemmas, a work attributed to Archimedes.

<span class="mw-page-title-main">Archimedean circle</span>

In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and r denotes the radius of any of the inner half circles, then the radius ρ of such an Archimedean circle is given by

<i>Book of Lemmas</i> Geometric treatise on circles attributed to Archemedes

The Book of Lemmas or Book of Assumptions is a book attributed to Archimedes by Thābit ibn Qurra, though the authorship of the book is questionable. It consists of fifteen propositions (lemmas) on circles.

<span class="mw-page-title-main">Law of cosines</span> Property of all triangles on a Euclidean plane

In trigonometry, the law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides and opposite respective angles and , the law of cosines states:

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span> Special quadrilateral whose diagonals intersect at right angles

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

In geometry, a circular triangle is a triangle with circular arc edges.

<span class="mw-page-title-main">Parbelos</span> Plane region bounded by three parabolas

The parbelos is a figure similar to the arbelos but instead of three half circles it uses three parabola segments. More precisely the parbelos consists of three parabola segments, that have a height that is one fourth of the width at their bases. The two smaller parabola segments are placed next to each other with their bases on a common line and the largest parabola is placed over the two smaller ones such that its width is the sum of the widths of the smaller ones.

References

  1. 1 2 Weisstein, Eric W. "Arbelos". MathWorld .
  2. Thomas Little Heath (1897), The Works of Archimedes. Cambridge University Press. Proposition 4 in the Book of Lemmas. Quote: If AB be the diameter of a semicircle and N any point on AB, and if semicircles be described within the first semicircle and having AN, BN as diameters respectively, the figure included between the circumferences of the three semicircles is "what Archimedes called arbelos"; and its area is equal to the circle on PN as diameter, where PN is perpendicular to AB and meets the original semicircle in P. ("Arbelos - the Shoemaker's Knife")
  3. Nelsen, R B (2002). "Proof without words: The area of an arbelos". Math. Mag. 75 (2): 144. doi:10.2307/3219152. JSTOR   3219152.
  4. Boas, Harold P. (2006). "Reflections on the Arbelos". The American Mathematical Monthly . 113 (3): 236–249. doi:10.2307/27641891. JSTOR   27641891.
  5. Antonio M. Oller-Marcen: "The f-belos". In: Forum Geometricorum, Volume 13 (2013), pp. 103–111.

Bibliography