Pentagonal number

Last updated
A visual representation of the first six pentagonal numbers Pentagonal number.gif
A visual representation of the first six pentagonal numbers

A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The nth pentagonal number pn is the number of distinct dots in a pattern of dots consisting of the outlines of regular pentagons with sides up to n dots, when the pentagons are overlaid so that they share one vertex. For instance, the third one is formed from outlines comprising 1, 5 and 10 dots, but the 1, and 3 of the 5, coincide with 3 of the 10 – leaving 12 distinct dots, 10 in the form of a pentagon, and 2 inside.

Contents

pn is given by the formula:

for n 1. The first few pentagonal numbers are:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151, 3290, 3432, 3577, 3725, 3876, 4030, 4187... (sequence A000326 in the OEIS ).

The nth pentagonal number is the sum of n integers starting from n (i.e. from n to 2n-1). The following relationships also hold:

Pentagonal numbers are closely related to triangular numbers. The nth pentagonal number is one third of the (3n − 1)th triangular number. In addition, where Tn is the nth triangular number:


Generalized pentagonal numbers are obtained from the formula given above, but with n taking values in the sequence 0, 1, −1, 2, −2, 3, −3, 4..., producing the sequence:

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335... (sequence A001318 in the OEIS ).

Generalized pentagonal numbers are important to Euler's theory of integer partitions, as expressed in his pentagonal number theorem.

The number of dots inside the outermost pentagon of a pattern forming a pentagonal number is itself a generalized pentagonal number.

Other properties

Generalized pentagonal numbers and centered hexagonal numbers

Generalized pentagonal numbers are closely related to centered hexagonal numbers. When the array corresponding to a centered hexagonal number is divided between its middle row and an adjacent row, it appears as the sum of two generalized pentagonal numbers, with the larger piece being a pentagonal number proper:

1=1+07=5+219=12+737=22+15
RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg
GrayDotX.svg GrayDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg
GrayDotX.svg GrayDotX.svg GrayDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg RedDotX.svg
GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg
GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg
GrayDotX.svg GrayDotX.svg GrayDotX.svg GrayDotX.svg

In general:

where both terms on the right are generalized pentagonal numbers and the first term is a pentagonal number proper (n 1). This division of centered hexagonal arrays gives generalized pentagonal numbers as trapezoidal arrays, which may be interpreted as Ferrers diagrams for their partition. In this way they can be used to prove the pentagonal number theorem referenced above.

Proof without words that the nth pentagonal number can be decomposed into three triangular numbers and the number n. Pentagonal number visual proof.svg
Proof without words that the nth pentagonal number can be decomposed into three triangular numbers and the number n.

Tests for pentagonal numbers

Given a positive integer x, to test whether it is a (non-generalized) pentagonal number we can compute

The number x is pentagonal if and only if n is a natural number. In that case x is the nth pentagonal number.

For generalized pentagonal numbers, it is sufficient to just check if 24x + 1 is a perfect square.

For non-generalized pentagonal numbers, in addition to the perfect square test, it is also required to check if

The mathematical properties of pentagonal numbers ensure that these tests are sufficient for proving or disproving the pentagonality of a number. [1]

Gnomon

The Gnomon of the nth pentagonal number is:

Square pentagonal numbers

A square pentagonal number is a pentagonal number that is also a perfect square. [2]

The first few are:

0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801... (OEIS entry A036353)

See also

Related Research Articles

<span class="mw-page-title-main">Triangular number</span> Figurate number

A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The nth triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is

<span class="mw-page-title-main">Square number</span> Product of an integer with itself

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon. These are one type of 2-dimensional figurate numbers.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

300 is the natural number following 299 and preceding 301.

700 is the natural number following 699 and preceding 701.

<span class="mw-page-title-main">Hexagonal number</span> Type of figurate number

A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.

<span class="mw-page-title-main">Centered hexagonal number</span> Number that represents a hexagon with a dot in the center

In mathematics and combinatorics, a centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following figures illustrate this arrangement for the first four centered hexagonal numbers:

<span class="mw-page-title-main">Pyramidal number</span> Figurate number

A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. The numbers of points in the base and in layers parallel to the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is given by a triangular number. It is possible to extend the pyramidal numbers to higher dimensions.

<span class="mw-page-title-main">Tetrahedral number</span> Polyhedral number representing a tetrahedron

A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The nth tetrahedral number, Ten, is the sum of the first n triangular numbers, that is,

<span class="mw-page-title-main">Centered square number</span> Centered figurate number that gives the number of dots in a square with a dot in the center

In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties.

In mathematics, the nth Motzkin number is the number of different ways of drawing non-intersecting chords between n points on a circle. The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory.

The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers of dots with a constant number of sides. Each side of a polygonal layer contains one more dot than each side in the previous layer; so starting from the second polygonal layer, each layer of a centered k-gonal number contains k more dots than the previous layer.

A decagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon. However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, the nth decagonal numbers counts the dots in a pattern of n nested decagons, all sharing a common corner, where the ith decagon in the pattern has sides made of i dots spaced one unit apart from each other. The n-th decagonal number is given by the following formula

A nonagonal number, or an enneagonal number, is a figurate number that extends the concept of triangular and square numbers to the nonagon. However, unlike the triangular and square numbers, the patterns involved in the construction of nonagonal numbers are not rotationally symmetrical. Specifically, the nth nonagonal number counts the dots in a pattern of n nested nonagons, all sharing a common corner, where the ith nonagon in the pattern has sides made of i dots spaced one unit apart from each other. The nonagonal number for n is given by the formula:

<span class="mw-page-title-main">Pentatope number</span> Number in the 5th cell of any row of Pascals triangle

In number theory, a pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left. It is named because it represents the number of 3-dimensional unit spheres which can be packed into a pentatope of increasing side lengths.

<span class="mw-page-title-main">1,000,000,000</span> Natural number

1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. With a number, "billion" can be abbreviated as b, bil or bn.

<span class="mw-page-title-main">Centered nonagonal number</span> Centered figurate number that represents a nonagon with a dot in the center

A centered nonagonal number is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula

<span class="mw-page-title-main">Central binomial coefficient</span> Sequence of numbers ((2n) choose (n))

In mathematics the nth central binomial coefficient is the particular binomial coefficient

<span class="mw-page-title-main">Cannonball problem</span> Mathematical problem on packing efficiency

In the mathematics of figurate numbers, the cannonball problem asks which numbers are both square and square pyramidal. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid. Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1.

References

  1. How do you determine if a number N is a Pentagonal Number?
  2. Weisstein, Eric W. "Pentagonal Square Number." From MathWorld--A Wolfram Web Resource.

Further reading