Highly composite number

Last updated
Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6 Highly composite number Cuisenaire rods 6.png
Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6

A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4, and for n=1,2,3,4,5, you get d(n)=1,2,2,3,2, respectively, which are all less than 4.

Contents

A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.

Ramanujan wrote a paper on highly composite numbers in 1915. [1]

The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (=  7!), as the ideal number of citizens in a city. [2] Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040. [3]

Examples

The first 41 highly composite numbers are listed in the table below (sequence A002182 in the OEIS ). The number of divisors is given in the column labeled d(n). Asterisks indicate superior highly composite numbers.

OrderHCN
n
prime
factorization
prime
exponents
number
of prime
factors
d(n)primorial
factorization
1 1 01
2 2*112
3 4 223
4 6*1,124
5 12*2,136
6 24 3,148
7 36 2,249
8 48 4,1510
9 60*2,1,1412
10 120*3,1,1516
11 180 2,2,1518
12 240 4,1,1620
13 360*3,2,1624
14 720 4,2,1730
15 840 3,1,1,1632
1612602,2,1,1636
1716804,1,1,1740
18 2520*3,2,1,1748
19 5040*4,2,1,1860
2075603,3,1,1864
21100805,2,1,1972
22151204,3,1,1980
23201606,2,1,11084
24252004,2,2,1990
25277203,2,1,1,1896
26453604,4,1,110100
27504005,2,2,110108
2855440*4,2,1,1,19120
29831603,3,1,1,19128
301108805,2,1,1,110144
311663204,3,1,1,110160
322217606,2,1,1,111168
332772004,2,2,1,110180
343326405,3,1,1,111192
354989604,4,1,1,111200
365544005,2,2,1,111216
376652806,3,1,1,112224
38720720*4,2,1,1,1,110240
3910810803,3,1,1,1,110256
401441440*5,2,1,1,1,111288
4121621604,3,1,1,1,111320

The divisors of the first 20 highly composite numbers are shown below.

nd(n)Divisors of n
111
221, 2
431, 2, 4
641, 2, 3, 6
1261, 2, 3, 4, 6, 12
2481, 2, 3, 4, 6, 8, 12, 24
3691, 2, 3, 4, 6, 9, 12, 18, 36
48101, 2, 3, 4, 6, 8, 12, 16, 24, 48
60121, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
120161, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
180181, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
240201, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240
360241, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360
720301, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720
840321, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840
1260361, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260
1680401, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680
2520481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520
5040601, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040
7560641, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 27, 28, 30, 35, 36, 40, 42, 45, 54, 56, 60, 63, 70, 72, 84, 90, 105, 108, 120, 126, 135, 140, 168, 180, 189, 210, 216, 252, 270, 280, 315, 360, 378, 420, 504, 540, 630, 756, 840, 945, 1080, 1260, 1512, 1890, 2520, 3780, 7560

The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.

The highly composite number: 10080
10080 = (2 × 2 × 2 × 2 × 2)  ×  (3 × 3)  ×  5  ×  7
1
×
10080
2
×
5040
3
×
3360
4
×
2520
5
×
2016
6
×
1680
7
×
1440
8
×
1260
9
×
1120
10
×
1008
12
×
840
14
×
720
15
×
672
16
×
630
18
×
560
20
×
504
21
×
480
24
×
420
28
×
360
30
×
336
32
×
315
35
×
288
36
×
280
40
×
252
42
×
240
45
×
224
48
×
210
56
×
180
60
×
168
63
×
160
70
×
144
72
×
140
80
×
126
84
×
120
90
×
112
96
×
105
Note:  Numbers in bold are themselves highly composite numbers.
Only the twentieth highly composite number 7560 (= 3 × 2520) is absent.
10080 is a so-called 7-smooth number (sequence A002473 in the OEIS ).

The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:

where is the th successive prime number, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is ). More concisely, it is the product of seven distinct primorials:

where is the primorial . [4]

Prime factorization

Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics. Highly composite numbers.svg
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.

Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:

where are prime, and the exponents are positive integers.

Any factor of n must have the same or lesser multiplicity in each prime:

So the number of divisors of n is:

Hence, for a highly composite number n,

Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials or, alternatively, the smallest number for its prime signature.

Note that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number (60) which has the same number of divisors.

Asymptotic growth and density

If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that

The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have

and

[5]
Euler diagram of numbers under 100:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Abundant
Primitive abundant
Highly abundant
Superabundant and highly composite
Colossally abundant and superior highly composite
Weird
Perfect
Composite
Deficient Euler diagram numbers with many divisors.svg
Euler diagram of numbers under 100:
   Abundant
   Superabundant and highly composite
   Weird
   Perfect
   Composite
   Deficient

Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800.

10 of the first 38 highly composite numbers are superior highly composite numbers. The sequence of highly composite numbers (sequence A002182 in the OEIS ) is a subset of the sequence of smallest numbers k with exactly n divisors (sequence A005179 in the OEIS ).

Highly composite numbers whose number of divisors is also a highly composite number are

1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200 (sequence A189394 in the OEIS ).

It is extremely likely that this sequence is complete.

A positive integer n is a largely composite number if d(n) ≥ d(m) for all mn. The counting function QL(x) of largely composite numbers satisfies

for positive c and d with . [6] [7]

Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions, many of these numbers are used in traditional systems of measurement and engineering designs.

See also

Notes

  1. Ramanujan, S. (1915). "Highly composite numbers" (PDF). Proc. London Math. Soc. Series 2. 14: 347–409. doi:10.1112/plms/s2_14.1.347. JFM   45.1248.01.
  2. Kahane, Jean-Pierre (February 2015), "Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'oeuvre", Notices of the American Mathematical Society, 62 (2): 136–140. Kahane cites Plato's Laws, 771c.
  3. Vardoulakis, Antonis; Pugh, Clive (September 2008), "Plato's hidden theorem on the distribution of primes" , The Mathematical Intelligencer, 30 (3): 61–63, doi:10.1007/BF02985381 .
  4. Flammenkamp, Achim, Highly Composite Numbers .
  5. Sándor et al. (2006) p. 45
  6. Sándor et al. (2006) p. 46
  7. Nicolas, Jean-Louis (1979). "Répartition des nombres largement composés". Acta Arith. (in French). 34 (4): 379–390. doi: 10.4064/aa-34-4-379-390 . Zbl   0368.10032.
  8. Srinivasan, A. K. (1948), "Practical numbers" (PDF), Current Science , 17: 179–180, MR   0027799 .

References