A highly composite number is a positive integer that has more divisors than all smaller positive integers. A related concept is that of a largely composite number, a positive integer that has at least as many divisors as all smaller positive integers. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are.
Ramanujan wrote a paper on highly composite numbers in 1915. [1]
The mathematician Jean-Pierre Kahane suggested that Plato must have known about highly composite numbers as he deliberately chose such a number, 5040 (= 7!), as the ideal number of citizens in a city. [2] Furthermore, Vardoulakis and Pugh's paper delves into a similar inquiry concerning the number 5040. [3]
The first 41 highly composite numbers are listed in the table below (sequence A002182 in the OEIS ). The number of divisors is given in the column labeled d(n). Asterisks indicate superior highly composite numbers.
Order | HCN n | prime factorization | prime exponents | number of prime factors | d(n) | primorial factorization |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | |||
2 | 2* | 1 | 1 | 2 | ||
3 | 4 | 2 | 2 | 3 | ||
4 | 6* | 1,1 | 2 | 4 | ||
5 | 12* | 2,1 | 3 | 6 | ||
6 | 24 | 3,1 | 4 | 8 | ||
7 | 36 | 2,2 | 4 | 9 | ||
8 | 48 | 4,1 | 5 | 10 | ||
9 | 60* | 2,1,1 | 4 | 12 | ||
10 | 120* | 3,1,1 | 5 | 16 | ||
11 | 180 | 2,2,1 | 5 | 18 | ||
12 | 240 | 4,1,1 | 6 | 20 | ||
13 | 360* | 3,2,1 | 6 | 24 | ||
14 | 720 | 4,2,1 | 7 | 30 | ||
15 | 840 | 3,1,1,1 | 6 | 32 | ||
16 | 1260 | 2,2,1,1 | 6 | 36 | ||
17 | 1680 | 4,1,1,1 | 7 | 40 | ||
18 | 2520* | 3,2,1,1 | 7 | 48 | ||
19 | 5040* | 4,2,1,1 | 8 | 60 | ||
20 | 7560 | 3,3,1,1 | 8 | 64 | ||
21 | 10080 | 5,2,1,1 | 9 | 72 | ||
22 | 15120 | 4,3,1,1 | 9 | 80 | ||
23 | 20160 | 6,2,1,1 | 10 | 84 | ||
24 | 25200 | 4,2,2,1 | 9 | 90 | ||
25 | 27720 | 3,2,1,1,1 | 8 | 96 | ||
26 | 45360 | 4,4,1,1 | 10 | 100 | ||
27 | 50400 | 5,2,2,1 | 10 | 108 | ||
28 | 55440* | 4,2,1,1,1 | 9 | 120 | ||
29 | 83160 | 3,3,1,1,1 | 9 | 128 | ||
30 | 110880 | 5,2,1,1,1 | 10 | 144 | ||
31 | 166320 | 4,3,1,1,1 | 10 | 160 | ||
32 | 221760 | 6,2,1,1,1 | 11 | 168 | ||
33 | 277200 | 4,2,2,1,1 | 10 | 180 | ||
34 | 332640 | 5,3,1,1,1 | 11 | 192 | ||
35 | 498960 | 4,4,1,1,1 | 11 | 200 | ||
36 | 554400 | 5,2,2,1,1 | 11 | 216 | ||
37 | 665280 | 6,3,1,1,1 | 12 | 224 | ||
38 | 720720* | 4,2,1,1,1,1 | 10 | 240 | ||
39 | 1081080 | 3,3,1,1,1,1 | 10 | 256 | ||
40 | 1441440* | 5,2,1,1,1,1 | 11 | 288 | ||
41 | 2162160 | 4,3,1,1,1,1 | 11 | 320 |
The divisors of the first 19 highly composite numbers are shown below.
n | d(n) | Divisors of n |
---|---|---|
1 | 1 | 1 |
2 | 2 | 1, 2 |
4 | 3 | 1, 2, 4 |
6 | 4 | 1, 2, 3, 6 |
12 | 6 | 1, 2, 3, 4, 6, 12 |
24 | 8 | 1, 2, 3, 4, 6, 8, 12, 24 |
36 | 9 | 1, 2, 3, 4, 6, 9, 12, 18, 36 |
48 | 10 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 |
60 | 12 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 |
120 | 16 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 |
180 | 18 | 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 |
240 | 20 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 |
360 | 24 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 |
720 | 30 | 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 |
840 | 32 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 |
1260 | 36 | 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260 |
1680 | 40 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680 |
2520 | 48 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520 |
5040 | 60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040 |
The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways.
The highly composite number: 10080 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7 | |||||
1 × 10080 | 2 × 5040 | 3 × 3360 | 4 × 2520 | 5 × 2016 | 6 × 1680 |
7 × 1440 | 8 × 1260 | 9 × 1120 | 10 × 1008 | 12 × 840 | 14 × 720 |
15 × 672 | 16 × 630 | 18 × 560 | 20 × 504 | 21 × 480 | 24 × 420 |
28 × 360 | 30 × 336 | 32 × 315 | 35 × 288 | 36 × 280 | 40 × 252 |
42 × 240 | 45 × 224 | 48 × 210 | 56 × 180 | 60 × 168 | 63 × 160 |
70 × 144 | 72 × 140 | 80 × 126 | 84 × 120 | 90 × 112 | 96 × 105 |
Note: Numbers in bold are themselves highly composite numbers. Only the twentieth highly composite number 7560 (= 3 × 2520) is absent. 10080 is a so-called 7-smooth number (sequence A002473 in the OEIS ). |
The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes:
where is the th successive prime number, and all omitted terms (a22 to a228) are factors with exponent equal to one (i.e. the number is ). More concisely, it is the product of seven distinct primorials:
Roughly speaking, for a number to be highly composite it has to have prime factors as small as possible, but not too many of the same. By the fundamental theorem of arithmetic, every positive integer n has a unique prime factorization:
where are prime, and the exponents are positive integers.
Any factor of n must have the same or lesser multiplicity in each prime:
So the number of divisors of n is:
Hence, for a highly composite number n,
Also, except in two special cases n = 4 and n = 36, the last exponent ck must equal 1. It means that 1, 4, and 36 are the only square highly composite numbers. Saying that the sequence of exponents is non-increasing is equivalent to saying that a highly composite number is a product of primorials or, alternatively, the smallest number for its prime signature.
Note that although the above described conditions are necessary, they are not sufficient for a number to be highly composite. For example, 96 = 25 × 3 satisfies the above conditions and has 12 divisors but is not highly composite since there is a smaller number (60) which has the same number of divisors.
If Q(x) denotes the number of highly composite numbers less than or equal to x, then there are two constants a and b, both greater than 1, such that
The first part of the inequality was proved by Paul Erdős in 1944 and the second part by Jean-Louis Nicolas in 1988. We have
and
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is 245,044,800; it has a digit sum of 27, which does not divide evenly into 245,044,800.
10 of the first 38 highly composite numbers are superior highly composite numbers. The sequence of highly composite numbers (sequence A002182 in the OEIS ) is a subset of the sequence of smallest numbers k with exactly n divisors (sequence A005179 in the OEIS ).
Highly composite numbers whose number of divisors is also a highly composite number are
It is extremely likely that this sequence is complete.
A positive integer n is a largely composite number if d(n) ≥ d(m) for all m ≤ n. The counting function QL(x) of largely composite numbers satisfies
for positive c and d with . [6] [7]
Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions, many of these numbers are used in traditional systems of measurement and engineering designs.
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.
In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:
In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and whenever a and b are coprime.
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are
In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy. Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called compositeness tests instead of primality tests.
In number theory, the partition functionp(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4.
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
In mathematics, and more particularly in number theory, primorial, denoted by "pn#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers.
In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. For example, a 7-smooth number is a number in which every prime factor is at most 7. Therefore, 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers. 2-smooth numbers are simply the powers of 2, while 5-smooth numbers are also known as regular numbers.
In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.
In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m < n:
In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.
1728 is the natural number following 1727 and preceding 1729. It is a dozen gross, or one great gross. It is also the number of cubic inches in a cubic foot.
In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula
In number theory, a multiplicative partition or unordered factorization of an integer is a way of writing as a product of integers greater than 1, treating two products as equivalent if they differ only in the ordering of the factors. The number is itself considered one of these products. Multiplicative partitions closely parallel the study of multipartite partitions, which are additive partitions of finite sequences of positive integers, with the addition made pointwise. Although the study of multiplicative partitions has been ongoing since at least 1923, the name "multiplicative partition" appears to have been introduced by Hughes & Shallit (1983). The Latin name "factorisatio numerorum" had been used previously. MathWorld uses the term unordered factorization.
Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.
In number theory, the sum of two squares theorem relates the prime decomposition of any integer n > 1 to whether it can be written as a sum of two squares, such that n = a2 + b2 for some integers a, b.
An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor pk, where prime and k is odd.
In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
In number theory, a Fermi–Dirac prime is a prime power whose exponent is a power of two. These numbers are named from an analogy to Fermi–Dirac statistics in physics based on the fact that each integer has a unique representation as a product of Fermi–Dirac primes without repetition. Each element of the sequence of Fermi–Dirac primes is the smallest number that does not divide the product of all previous elements. Srinivasa Ramanujan used the Fermi–Dirac primes to find the smallest number whose number of divisors is a given power of two.