Nonhypotenuse number

Last updated
5 is not a nonhypotenuse number Triangle345.svg
5 is not a nonhypotenuse number

In mathematics, a nonhypotenuse number is a natural number whose square cannot be written as the sum of two nonzero squares. The name stems from the fact that an edge of length equal to a nonhypotenuse number cannot form the hypotenuse of a right angle triangle with integer sides.

Contents

The numbers 1, 2, 3, and 4 are all nonhypotenuse numbers. The number 5, however, is not a nonhypotenuse number as .

The first fifty nonhypotenuse numbers are:

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 38, 42, 43, 44, 46, 47, 48, 49, 54, 56, 57, 59, 62, 63, 64, 66, 67, 69, 71, 72, 76, 77, 79, 81, 83, 84 (sequence A004144 in the OEIS )

Although nonhypotenuse numbers are common among small integers, they become more-and-more sparse for larger numbers. Yet, there are infinitely many nonhypotenuse numbers, and the number of nonhypotenuse numbers not exceeding a value x scales asymptotically with x/log x. [1]

The nonhypotenuse numbers are those numbers that have no prime factors of the form 4k+1. [2] Equivalently, they are the number that cannot be expressed in the form where K, m, and n are all positive integers. A number whose prime factors are not all of the form 4k+1 cannot be the hypotenuse of a primitive integer right triangle (one for which the sides do not have a nontrivial common divisor), but may still be the hypotenuse of a non-primitive triangle. [3]

The nonhypotenuse numbers have been applied to prove the existence of addition chains that compute the first square numbers using only additions. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle.

20 (twenty) is the natural number following 19 and preceding 21.

<span class="mw-page-title-main">Square number</span> Product of an integer with itself

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

<span class="mw-page-title-main">Centered square number</span> Centered figurate number that gives the number of dots in a square with a dot in the center

In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

<span class="mw-page-title-main">Pythagorean prime</span>

A Pythagorean prime is a prime number of the form . Pythagorean primes are exactly the odd prime numbers that are the sum of two squares; this characterization is Fermat's theorem on sums of two squares.

<span class="mw-page-title-main">Congruum</span> Spacing between equally-spaced square numbers

In number theory, a congruum is the difference between successive square numbers in an arithmetic progression of three squares. That is, if , , and are three square numbers that are equally spaced apart from each other, then the spacing between them, , is called a congruum.

<span class="mw-page-title-main">Pythagorean quadruple</span> Four integers where the sum of the squares of three equals the square of the fourth

A Pythagorean quadruple is a tuple of integers a, b, c, and d, such that a2 + b2 + c2 = d2. They are solutions of a Diophantine equation and often only positive integer values are considered. However, to provide a more complete geometric interpretation, the integer values can be allowed to be negative and zero (thus allowing Pythagorean triples to be included) with the only condition being that d > 0. In this setting, a Pythagorean quadruple (a, b, c, d) defines a cuboid with integer side lengths |a|, |b|, and |c|, whose space diagonal has integer length d; with this interpretation, Pythagorean quadruples are thus also called Pythagorean boxes. In this article we will assume, unless otherwise stated, that the values of a Pythagorean quadruple are all positive integers.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

<span class="mw-page-title-main">Group of rational points on the unit circle</span> Complex numbers with unit norm and both real and imaginary parts rational numbers

In mathematics, the rational points on the unit circle are those points (xy) such that both x and y are rational numbers ("fractions") and satisfy x2 + y2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples. Consider a primitive right triangle, that is, with integer side lengths a, b, c, with c the hypotenuse, such that the sides have no common factor larger than 1. Then on the unit circle there exists the rational point (a/cb/c), which, in the complex plane, is just a/c + ib/c, where i is the imaginary unit. Conversely, if (xy) is a rational point on the unit circle in the 1st quadrant of the coordinate system (i.e. x > 0, y > 0), then there exists a primitive right triangle with sides xcycc, with c being the least common multiple of the denominators of x and y. There is a correspondence between points (a, b) in the x-y plane and points a + ib in the complex plane which is used below.

<span class="mw-page-title-main">Fermat's right triangle theorem</span> Rational right triangles cannot have square area

Fermat's right triangle theorem is a non-existence proof in number theory, published in 1670 among the works of Pierre de Fermat, soon after his death. It is the only complete proof given by Fermat. It has many equivalent formulations, one of which was stated in 1225 by Fibonacci. In its geometric forms, it states:

In mathematics, statistics and elsewhere, sums of squares occur in a number of contexts:

<span class="mw-page-title-main">Automedian triangle</span>

In plane geometry, an automedian triangle is a triangle in which the lengths of the three medians are proportional to the lengths of the three sides, in a different order. The three medians of an automedian triangle may be translated to form the sides of a second triangle that is similar to the first one.

<span class="mw-page-title-main">Sum of two squares theorem</span> Characterization by prime factors of sums of two squares

In number theory, the sum of two squares theorem relates the prime decomposition of any integer n > 1 to whether it can be written as a sum of two squares, such that n = a2 + b2 for some integers a, b.

An integer greater than one can be written as a sum of two squares if and only if its prime decomposition contains no factor pk, where prime and k is odd.

References

  1. D. S.; Beiler, Albert H. (1968), "Albert Beiler, Consecutive Hypotenuses of Pythagorean Triangles", Mathematics of Computation , 22 (103): 690–692, doi:10.2307/2004563, JSTOR   2004563 . This review of a manuscript of Beiler's (which was later published in J. Rec. Math.7 (1974) 120–133, MR 0422125) attributes this bound to Landau.
  2. Shanks, D. (1975), "Non-hypotenuse numbers", Fibonacci Quarterly , 13 (4): 319–321, doi:10.1080/00150517.1975.12430618, MR   0387219 .
  3. Beiler, Albert (1966), Recreations in the Theory of Numbers: The Queen of Mathematics Entertains (2 ed.), New York: Dover Publications, p.  116-117, ISBN   978-0-486-21096-4
  4. Dobkin, David; Lipton, Richard J. (1980), "Addition chain methods for the evaluation of specific polynomials", SIAM Journal on Computing , 9 (1): 121–125, doi:10.1137/0209011, MR   0557832