Arithmetic number

Last updated
Demonstration, with Cuisenaire rods, of the arithmetic nature of the number 6 Arithmetic number Cuisenaire rods 6.png
Demonstration, with Cuisenaire rods, of the arithmetic nature of the number 6

In number theory, an arithmetic number is an integer for which the average of its positive divisors is also an integer. For instance, 6 is an arithmetic number because the average of its divisors is

Contents

which is also an integer. However, 2 is not an arithmetic number because its only divisors are 1 and 2, and their average 3/2 is not an integer.

The first numbers in the sequence of arithmetic numbers are

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, ... (sequence A003601 in the OEIS ).

Density

It is known that the natural density of such numbers is 1: [1] indeed, the proportion of numbers less than X which are not arithmetic is asymptotically [2]

where c = 2log 2 + o(1).

A number N is arithmetic if the number of divisors d(N) divides the sum of divisors σ(N). It is known that the density of integers N obeying the stronger condition that d(N)2 divides σ(N) is 1/2. [1] [2]

Notes

  1. 1 2 Guy (2004) p.76
  2. 1 2 Bateman, Paul T.; Erdős, Paul; Pomerance, Carl; Straus, E.G. (1981). "The arithmetic mean of the divisors of an integer". In Knopp, M.I. (ed.). Analytic number theory, Proc. Conf., Temple Univ., 1980 (PDF). Lecture Notes in Mathematics. Vol. 899. Springer-Verlag. pp. 197–220. Zbl   0478.10027.

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Divisor</span> Integer that is a factor of another integer

In mathematics, a divisor of an integer, also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

A highly composite number is a positive integer with more divisors than any smaller positive integer has. A related concept is that of a largely composite number, a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers are not actually composite numbers; however, all further terms are.

<span class="mw-page-title-main">Multiply perfect number</span> Number whose divisors add to a multiple of that number

In mathematics, a multiply perfect number is a generalization of a perfect number.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Weird number</span>

In number theory, a weird number is a natural number that is abundant but not semiperfect.

<span class="mw-page-title-main">Almost perfect number</span> Class of natural number

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, a harmonic divisor number, or Ore number, is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are:

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

<span class="mw-page-title-main">Colossally abundant number</span> Concept in mathematics

In mathematics, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Formally, a number n is said to be colossally abundant if there is an ε > 0 such that for all k > 1,

In number theory, natural density is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval [1, n] as n grows large.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number.

In number theory, a multiplicative partition or unordered factorization of an integer n is a way of writing n as a product of integers greater than 1, treating two products as equivalent if they differ only in the ordering of the factors. The number n is itself considered one of these products. Multiplicative partitions closely parallel the study of multipartite partitions, discussed in Andrews (1976), which are additive partitions of finite sequences of positive integers, with the addition made pointwise. Although the study of multiplicative partitions has been ongoing since at least 1923, the name "multiplicative partition" appears to have been introduced by Hughes & Shallit (1983). The Latin name "factorisatio numerorum" had been used previously. MathWorld uses the term unordered factorization.

In mathematics, a superperfect number is a positive integer n that satisfies

References