Amicable triple

Last updated

In mathematics, an amicable triple is a set of three different numbers so related that the restricted sum of the divisors of each is equal to the sum of other two numbers. [1] [2]

In another equivalent characterization, an amicable triple is a set of three different numbers so related that the sum of the divisors of each is equal to the sum of the three numbers.

So a triple (a, b, c) of natural numbers is called amicable if s(a) = b+c, s(b) = a+c and s(c) = a+b, or equivalently if σ(a) = σ(b) = σ(c) = a+b+c. Here σ(n) is the sum of all positive divisors, and s(n) = σ(n) − n is the aliquot sum. [3]

Related Research Articles

<span class="mw-page-title-main">Amicable numbers</span> Pair of integers related by their divisors

Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, s(a)=b and s(b)=a, where s(n)=σ(n)-n is equal to the sum of positive divisors of n except n itself (see also divisor function).

<span class="mw-page-title-main">Perfect number</span> Integer equal to the sum of its proper divisors

In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

<span class="mw-page-title-main">Multiply perfect number</span> Number whose divisors add to a multiple of that number

In mathematics, a multiply perfect number is a generalization of a perfect number.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

<span class="mw-page-title-main">Deficient number</span> Number whose divisor sum is less than itself

In number theory, a deficient number or defective number is a positive integer n for which the sum of divisors of n is less than 2n. Equivalently, it is a number for which the sum of proper divisors is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient.

In mathematics, a quasiperfect number is a natural number n for which the sum of all its divisors (the sum-of-divisors function σ(n)) is equal to 2n + 1. Equivalently, n is the sum of its non-trivial divisors (that is, its divisors excluding 1 and n). No quasiperfect numbers have been found so far.

<span class="mw-page-title-main">Almost perfect number</span> Numbers whose sum of divisors is twice the number minus 1

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficientnumber) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

In mathematics, a harmonic divisor number or Ore number is a positive integer whose divisors have a harmonic mean that is an integer. The first few harmonic divisor numbers are

In mathematics, an untouchable number is a positive integer that cannot be expressed as the sum of all the proper divisors of any positive integer. That is, these numbers are not in the image of the aliquot sum function. Their study goes back at least to Abu Mansur al-Baghdadi, who observed that both 2 and 5 are untouchable.

<span class="mw-page-title-main">Practical number</span> Number whose sums of distinct divisors represent all smaller numbers

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

In mathematics, a superabundant number is a certain kind of natural number. A natural number n is called superabundant precisely when, for all m < n:

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.

Jeffrey Clark Lagarias is a mathematician and professor at the University of Michigan.

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Equivalently, a divisor a of b is a unitary divisor if and only if every prime factor of a has the same multiplicity in a as it has in b.

In number theory, the aliquot sums(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is,

The Kempner series is a modification of the harmonic series, formed by omitting all terms whose denominator expressed in base 10 contains the digit 9. That is, it is the sum

In mathematics, the Bhatia–Davis inequality, named after Rajendra Bhatia and Chandler Davis, is an upper bound on the variance σ2 of any bounded probability distribution on the real line.

<i>History of the Theory of Numbers</i> Book by Leonard Eugene Dickson

History of the Theory of Numbers is a three-volume work by Leonard Eugene Dickson summarizing work in number theory up to about 1920. The style is unusual in that Dickson mostly just lists results by various authors, with little further discussion. The central topic of quadratic reciprocity and higher reciprocity laws is barely mentioned; this was apparently going to be the topic of a fourth volume that was never written.

The Euclid–Euler theorem is a theorem in number theory that relates perfect numbers to Mersenne primes. It states that an even number is perfect if and only if it has the form 2p−1(2p − 1), where 2p − 1 is a prime number. The theorem is named after mathematicians Euclid and Leonhard Euler, who respectively proved the "if" and "only if" aspects of the theorem.

References

  1. Dickson, L. E. (1913-03-01). "Amicable Number Triples". The American Mathematical Monthly. 20 (3): 84–92. doi:10.1080/00029890.1913.11997926. ISSN   0002-9890.
  2. Dickson, L. E. (1913). "Amicable Number Triples". The American Mathematical Monthly. 20 (3): 84–92. doi:10.2307/2973442. ISSN   0002-9890. JSTOR   2973442.
  3. Mason, Thomas E. (1921). "On Amicable Numbers and Their Generalizations". The American Mathematical Monthly. 28 (5): 195–200. doi:10.2307/2973750. ISSN   0002-9890. JSTOR   2973750.