Nonagonal number

Last updated

A nonagonal number (or an enneagonal number) is a figurate number that extends the concept of triangular and square numbers to the nonagon (a nine-sided polygon). [1] However, unlike the triangular and square numbers, the patterns involved in the construction of nonagonal numbers are not rotationally symmetrical. Specifically, the nth nonagonal number counts the number of dots in a pattern of n nested nonagons, all sharing a common corner, where the ith nonagon in the pattern has sides made of i dots spaced one unit apart from each other. The nonagonal number for n is given by the formula: [2]

Contents

Nonagonal numbers

The first few nonagonal numbers are:

0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364, 6666, 6975, 7291, 7614, 7944, 8281, 8625, 8976, 9334, 9699. (sequence A001106 in the OEIS )

The parity of nonagonal numbers follows the pattern odd-odd-even-even. The Digital root pattern for nonagonal numbers, repeating every nine terms, as shown above, is "1, 9, 6, 1, 3, 3, 1, 6, 9" the total of which is 39.

Relationship between nonagonal and triangular numbers

Letting denote the nth nonagonal number, and using the formula for the nth triangular number,

Test for nonagonal numbers

If x is an integer, then n is the x-th nonagonal number. If x is not an integer, then n is not nonagonal.

See also

Related Research Articles

<span class="mw-page-title-main">Triangular number</span> Figurate number

A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The nth triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is

<span class="mw-page-title-main">Square number</span> Product of an integer with itself

In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

In mathematics, a polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. The dots are thought of as alphas (units). These are one type of 2-dimensional figurate numbers.

<span class="mw-page-title-main">Hexagonal number</span> Type of figurate number

A hexagonal number is a figurate number. The nth hexagonal number hn is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.

In mathematics and combinatorics, a centered hexagonal number, or hex number, is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice. The following figures illustrate this arrangement for the first four centered hexagonal numbers:

<span class="mw-page-title-main">Pentagonal number</span>

A pentagonal number is a figurate number that extends the concept of triangular and square numbers to the pentagon, but, unlike the first two, the patterns involved in the construction of pentagonal numbers are not rotationally symmetrical. The nth pentagonal number pn is the number of distinct dots in a pattern of dots consisting of the outlines of regular pentagons with sides up to n dots, when the pentagons are overlaid so that they share one vertex. For instance, the third one is formed from outlines comprising 1, 5 and 10 dots, but the 1, and 3 of the 5, coincide with 3 of the 10 – leaving 12 distinct dots, 10 in the form of a pentagon, and 2 inside.

<span class="mw-page-title-main">Heptagonal number</span>

A heptagonal number is a figurate number that is constructed by combining heptagons with ascending size. The n-th heptagonal number is given by the formula

<span class="mw-page-title-main">Pyramidal number</span> Figurate number

A pyramidal number is a figurate number that represents a pyramid with a polygonal base and a given number of triangular sides. A pyramidal number is the number of points in a pyramid where each layer of the pyramid is an r-sided polygon of points. The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to pyramids with three or more sides. The numbers of points in the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is given by a triangular number. It is possible to extend the pyramidal numbers to higher dimensions.

<span class="mw-page-title-main">Tetrahedral number</span>

A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The nth tetrahedral number, Ten, is the sum of the first n triangular numbers, that is,

<span class="mw-page-title-main">Square pyramidal number</span> Number of stacked spheres in a pyramid

In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.

5000 is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic number in the English language.

A pronic number is a number that is the product of two consecutive integers, that is, a number of the form The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers, or rectangular numbers; however, the term "rectangular number" has also been applied to the composite numbers.

<span class="mw-page-title-main">Centered square number</span> Centered figurate number that gives the number of dots in a square with a dot in the center

In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties.

The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers of dots with a constant number of sides. Each side of a polygonal layer contains one more dot than each side in the previous layer; so starting from the second polygonal layer, each layer of a centered k-gonal number contains k more dots than the previous layer.

<span class="mw-page-title-main">Pentatope number</span>

A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the 5-term row 1 4 6 4 1, either from left to right or from right to left.

<span class="mw-page-title-main">Centered heptagonal number</span> Centered figurate number that represents a heptagon with a dot in the center

A centered heptagonal number is a centered figurate number that represents a heptagon with a dot in the center and all other dots surrounding the center dot in successive heptagonal layers. The centered heptagonal number for n is given by the formula

<span class="mw-page-title-main">Centered octagonal number</span> Centered figurate number that represents an octagon with a dot in the center

A centered octagonal number is a centered figurate number that represents an octagon with a dot in the center and all other dots surrounding the center dot in successive octagonal layers. The centered octagonal numbers are the same as the odd square numbers. Thus, the nth odd square number and tth centered octagonal number is given by the formula

<span class="mw-page-title-main">Centered nonagonal number</span> Centered figurate number that represents a nonagon with a dot in the center

A centered nonagonal number is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula

<span class="mw-page-title-main">Centered decagonal number</span> Centered figurate number that represents a decagon with a dot in the center

A centered decagonal number is a centered figurate number that represents a decagon with a dot in the center and all other dots surrounding the center dot in successive decagonal layers. The centered decagonal number for n is given by the formula

288 is the natural number following 287 and preceding 289. Because 288 = 2 · 12 · 12, it may also be called "two gross" or "two dozen dozen".

References

  1. Deza, Elena (2012). Figurate Numbers (1 ed.). World Scientific Publishing Co. p. 2. ISBN   978-9814355483.
  2. "A001106". Online Encyclopedia of Integer Sequences. OEIS Foundation, Inc. Retrieved 3 July 2020.