Leonardo number

Last updated

The Leonardo numbers are a sequence of numbers given by the recurrence:

Contents

Edsger W. Dijkstra [1] used them as an integral part of his smoothsort algorithm, [2] and also analyzed them in some detail. [3] [4]

A Leonardo prime is a Leonardo number that's also prime.

Values

The first Leonardo numbers are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, ... (sequence A001595 in the OEIS )

The only Leonardo primes are

3, 5, 41, 67, 109, 1973, 5167, 2692537, 11405773, 126491971, 331160281, 535828591, 279167724889, 145446920496281, 28944668049352441, 5760134388741632239, 63880869269980199809, 167242286979696845953, 597222253637954133837103, ... (sequence A145912 in the OEIS )

Modulo cycles

The Leonardo numbers form a cycle in any modulo n≥2. An easy way to see it is:

The cycles for n≤8 are:

ModuloCycleLength
211
31,1,0,2,0,0,1,28
41,1,33
51,1,3,0,4,0,0,1,2,4,2,2,0,3,4,3,3,2,1,420
61,1,3,5,3,3,1,58
71,1,3,5,2,1,4,6,4,4,2,0,3,4,1,616
81,1,3,5,1,76

The cycle always end on the pair (1,n-1), as it's the only pair which can precede the pair (1,1).

Expressions

Proof

Relation to Fibonacci numbers

The Leonardo numbers are related to the Fibonacci numbers by the relation .

From this relation it is straightforward to derive a closed-form expression for the Leonardo numbers, analogous to Binet's formula for the Fibonacci numbers:

where the golden ratio and are the roots of the quadratic polynomial .

Related Research Articles

<span class="mw-page-title-main">Fibonacci number</span> Integer in the infinite Fibonacci sequence

In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the first few values in the sequence are:

<span class="mw-page-title-main">Golden ratio</span> Ratio between two quantities whose sum is at the same ratio to the larger one

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with ,

<span class="mw-page-title-main">Haar wavelet</span>

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and extensively used as a teaching example.

<span class="mw-page-title-main">Lucas number</span> Infinite integer series where the next number is the sum of the two preceding it

The Lucas numbers or Lucas series are an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation , where the signs + or − are chosen at random with equal probability , independently for different . By a theorem of Harry Kesten and Hillel Furstenberg, random recurrent sequences of this kind grow at a certain exponential rate, but it is difficult to compute the rate explicitly. In 1999, Divakar Viswanath showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943..., a mathematical constant that was later named Viswanath's constant.

In number theory, an n-smooth (or n-friable) number is an integer whose prime factors are all less than or equal to n. For example, a 7-smooth number is a number whose every prime factor is at most 7, so 49 = 72 and 15750 = 2 × 32 × 53 × 7 are both 7-smooth, while 11 and 702 = 2 × 33 × 13 are not 7-smooth. The term seems to have been coined by Leonard Adleman. Smooth numbers are especially important in cryptography, which relies on factorization of integers. The 2-smooth numbers are just the powers of 2, while 5-smooth numbers are known as regular numbers.

<span class="mw-page-title-main">Pisano period</span> Period of the Fibonacci sequence modulo an integer

In number theory, the nth Pisano period, written as π(n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774.

<span class="mw-page-title-main">Pell number</span> Natural number used to approximate √2

In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the LSZ reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

Cassini's identity and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number,

<span class="mw-page-title-main">Fibonacci word</span> Binary sequence from Fibonacci recurrence

A Fibonacci word is a specific sequence of binary digits. The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In functional analysis and quantum measurement theory, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalisation of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalisation of quantum measurement described by PVMs.

In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

<span class="mw-page-title-main">Helium atom</span> Chemical compound

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with either one or two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom.

In mathematics, the Fibonorialn!F, also called the Fibonacci factorial, where n is a nonnegative integer, is defined as the product of the first n positive Fibonacci numbers, i.e.

In mathematics, the Wythoff array is an infinite matrix of integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

In mathematics, two quantities are in the supergolden ratio if the quotient of the larger number divided by the smaller one is equal to

References

  1. "E.W.Dijkstra Archive: Fibonacci numbers and Leonardo numbers. (EWD 797)". www.cs.utexas.edu. Retrieved 2020-08-11.
  2. Dijkstra, Edsger W. Smoothsort – an alternative to sorting in situ (EWD-796a) (PDF). E.W. Dijkstra Archive. Center for American History, University of Texas at Austin. ( transcription )
  3. "E.W.Dijkstra Archive: Smoothsort, an alternative for sorting in situ (EWD 796a)". www.cs.utexas.edu. Retrieved 2020-08-11.
  4. "Leonardo Number - GeeksforGeeks". www.geeksforgeeks.org. Retrieved 2022-10-08.