Fourth power

Last updated

In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So:

Contents

n4 = n × n × n × n

Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.

Some people refer to n4 as n “ tesseracted ”, “hypercubed”, “ zenzizenzic ”, “ biquadrate ” or “supercubed” instead of “to the power of 4”.

The sequence of fourth powers of integers (also known as biquadrates or tesseractic numbers) is:

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, ... (sequence A000583 in the OEIS ).

Properties

The last digit of a fourth power in decimal can only be 0 (in fact 0000), 1, 5 (in fact 0625), or 6.

Every positive integer can be expressed as the sum of at most 19 fourth powers; every integer larger than 13792 can be expressed as the sum of at most 16 fourth powers (see Waring's problem).

Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle theorem). Euler conjectured that a fourth power cannot be written as the sum of three fourth powers, but 200 years later, in 1986, this was disproven by Elkies with:

206156734 = 187967604 + 153656394 + 26824404.

Elkies showed that there are infinitely many other counterexamples for exponent four, some of which are: [1]

28130014 = 27676244 + 13904004 + 6738654 (Allan MacLeod)
87074814 = 83322084 + 55078804 + 17055754 (D.J. Bernstein)
121974574 = 112890404 + 82825434 + 58700004 (D.J. Bernstein)
160030174 = 141737204 + 125522004 + 44790314 (D.J. Bernstein)
164305134 = 162810094 + 70286004 + 36428404 (D.J. Bernstein)
4224814 = 4145604 + 2175194 + 958004 (Roger Frye, 1988)
6385232494 = 6306626244 + 2751562404 + 2190764654 (Allan MacLeod, 1998)

Equations containing a fourth power

Fourth-degree equations, which contain a fourth degree (but no higher) polynomial are, by the Abel–Ruffini theorem, the highest degree equations having a general solution using radicals.

See also

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

In number theory, Euler's conjecture is a disproved conjecture related to Fermat's Last Theorem. It was proposed by Leonhard Euler in 1769. It states that for all integers n and k greater than 1, if the sum of n many kth powers of positive integers is itself a kth power, then n is greater than or equal to k:

In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring, after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem, was provided by Hilbert in 1909. Waring's problem has its own Mathematics Subject Classification, 11P05, "Waring's problem and variants".

In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. It is a method which relies on the well-ordering principle, and is often used to show that a given equation, such as a Diophantine equation, has no solutions.

<span class="mw-page-title-main">Cube (algebra)</span> Number raised to the third power

In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3.

In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution. Proving that something is impossible is usually much harder than the opposite task, as it is often necessary to develop a proof that works in general, rather than to just show a particular example. Impossibility theorems are usually expressible as negative existential propositions or universal propositions in logic.

In mathematics and statistics, sums of powers occur in a number of contexts:

<span class="mw-page-title-main">Fermat's Last Theorem</span> 17th-century conjecture proved by Andrew Wiles in 1994

In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions.

A timeline of number theory.

Fermat's Last Theorem is a theorem in number theory, originally stated by Pierre de Fermat in 1637 and proven by Andrew Wiles in 1995. The statement of the theorem involves an integer exponent n larger than 2. In the centuries following the initial statement of the result and before its general proof, various proofs were devised for particular values of the exponent n. Several of these proofs are described below, including Fermat's proof in the case n = 4, which is an early example of the method of infinite descent.

<span class="mw-page-title-main">Fermat's right triangle theorem</span> Rational right triangles cannot have square area

Fermat's right triangle theorem is a non-existence proof in number theory, published in 1670 among the works of Pierre de Fermat, soon after his death. It is the only complete proof given by Fermat. It has several equivalent formulations, one of which was stated in 1225 by Fibonacci. In its geometric forms, it states:

The Lander, Parkin, and Selfridge conjecture concerns the integer solutions of equations which contain sums of like powers. The equations are generalisations of those considered in Fermat's Last Theorem. The conjecture is that if the sum of some k-th powers equals the sum of some other k-th powers, then the total number of terms in both sums combined must be at least k.

In arithmetic and algebra, the fifth power or sursolid of a number n is the result of multiplying five instances of n together:

<span class="mw-page-title-main">Sixth power</span>

In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:

In arithmetic and algebra the seventh power of a number n is the result of multiplying seven instances of n together. So:

In arithmetic and algebra the eighth power of a number n is the result of multiplying eight instances of n together. So:

<span class="mw-page-title-main">Sum of two cubes</span> Mathematical polynomial formula

In mathematics, the sum of two cubes is a cubed number added to another cubed number.

References

  1. Quoted in Meyrignac, Jean-Charles (14 February 2001). "Computing Minimal Equal Sums Of Like Powers: Best Known Solutions" . Retrieved 17 July 2017.