Zenzizenzizenzic

Last updated

Zenzizenzizenzic is an obsolete form of mathematical notation representing the eighth power of a number (that is, the zenzizenzizenzic of x is x8), dating from a time when powers were written out in words rather than as superscript numbers. This term was suggested by Robert Recorde, a 16th-century Welsh physician, mathematician and writer of popular mathematics textbooks, in his 1557 work The Whetstone of Witte (although his spelling was zenzizenzizenzike); he wrote that it "doeth represent the square of squares squaredly".

Contents

History

Page from The Whetstone of Witte, 1557. Zenzizenzizenzike occurs at the top of the right hand page. Whetstone-of-Witte-pp-150-151.jpg
Page from The Whetstone of Witte, 1557. Zenzizenzizenzike occurs at the top of the right hand page.

At the time Recorde proposed this notation, there was no easy way of denoting the powers of numbers other than squares and cubes. The root word for Recorde's notation is zenzic, which is a German spelling of the medieval Italian word censo, meaning 'squared'. [1] Since the square of a square of a number is its fourth power, Recorde used the word zenzizenzic (spelled by him as zenzizenzike) to express it. Some of the terms had prior use in Latin zenzicubicus, zensizensicus and zensizenzum. [2] Similarly, as the sixth power of a number is equal to the square of its cube, Recorde used the word zenzicubike to express it; a more modern spelling, zenzicube, is found in Samuel Jeake's Arithmetick Surveighed and Reviewed . Finally, the word zenzizenzizenzic denotes the square of the square of a number's square, which is its eighth power: in modern notation,

Samuel Jeake gives zenzizenzizenzizenzike (the square of the square of the square of the square, or 16th power) in a table in A Compleat Body of Arithmetick (1701): [3]

IndicesCharactersSignification of the characters
0NAn absolute number, as if it had no mark
.........
16ℨℨℨℨA Zenzizenzizenzizenzike or square of squares squaredly squared
.........

The word, as well as the system, is obsolete except as a curiosity; the Oxford English Dictionary (OED) has only one citation for it. [4] [5] As well as being a mathematical oddity, it survives as a linguistic oddity: zenzizenzizenzic has more Zs than any other word in the OED. [6] [7]

Notation for other powers

Recorde proposed three mathematical terms by which any power (that is, index or exponent) greater than 1 could be expressed: zenzic, i.e. squared; cubic; and sursolid , i.e. raised to a prime number greater than three, the smallest of which is five. Sursolids were as follows: 5 was the first; 7, the second; 11, the third; 13, the fourth; etc.

Table of powers, symbols and names or descriptions from 0 to 24 by Samuel Jeake, written in 1671 Cossical characters.png
Table of powers, symbols and names or descriptions from 0 to 24 by Samuel Jeake, written in 1671

Therefore, a number raised to the power of six would be zenzicubic, a number raised to the power of seven would be the second sursolid, hence bissursolid (not a multiple of two and three), a number raised to the twelfth power would be the "zenzizenzicubic" and a number raised to the power of ten would be the square of the (first) sursolid. The fourteenth power was the square of the second sursolid, and the twenty-second was the square of the third sursolid.

Jeake's text appears to designate a written exponent of 0 as being equal to an "absolute number, as if it had no Mark", thus using the notation x0 to refer to an independent term of a polynomial, while a written exponent of 1, in his text, denotes "the Root of any number" (using root with the meaning of the base number, i.e. its first power x1, as demonstrated in the examples provided in the book).

Citations

  1. Quinion, Michael, "Zenzizenzizenzic - the eighth power of a number", World Wide Words , retrieved 19 March 2010.
  2. Michael Stifel. Arithmetica Integra (in Latin). Nuremberg. p. 61.
  3. Samuel Jeake (1701). Samuel Jeake the Younger (ed.). A Compleat Body of Arithmetick. London: T. Newborough. p. 272.
  4. Knight (1868).
  5. Reilly (2003).
  6. "Recorde also coined zenzizenzizenzic, OED with more Zs than any other" ( Reilly 2003 ).
  7. Uniquely contains six Zs. Thus, it's the only hexazetic word in the English language. "Numerical Adjectives, Greek and Latin Number Prefixes". phrontistery.info. Retrieved 19 March 2010.

Related Research Articles

<span class="mw-page-title-main">Elementary algebra</span> Basic concepts of algebra

Elementary algebra, also known as college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.

<span class="mw-page-title-main">Number</span> Used to count, measure, and label

A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.

1 is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of unit length is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by 2, although by other definitions 1 is the second natural number, following 0.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form, since to do so would require writing out an inconveniently long string of digits. It may be referred to as scientific form or standard index form, or standard form in the United Kingdom. This base ten notation is commonly used by scientists, mathematicians, and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators, it is usually known as "SCI" display mode.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

In mathematics, function composition is an operation  ∘  that takes two functions f and g, and produces a function h = g  ∘  f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : XY and g : YZ are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x. The resulting composite function is denoted g ∘ f : XZ, defined by (g ∘ f )(x) = g(f(x)) for all x in X.

In mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index. This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:

The plus sign+ and the minus sign are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, + represents the operation of addition, which results in a sum, while represents subtraction, resulting in a difference. Their use has been extended to many other meanings, more or less analogous. Plus and minus are Latin terms meaning "more" and "less", respectively.

<span class="mw-page-title-main">Robert Recorde</span> Welsh mathematician and inventor of the equals sign

Robert Recorde was a Welsh physician and mathematician. He invented the equals sign (=) and also introduced the pre-existing plus (+) and minus (−) signs to English speakers in 1557.

<span class="mw-page-title-main">Tetration</span> Arithmetic operation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

The equals sign or equal sign, also known as the equality sign, is the mathematical symbol =, which is used to indicate equality in some well-defined sense. In an equation, it is placed between two expressions that have the same value, or for which one studies the conditions under which they have the same value.

<span class="mw-page-title-main">Elementary mathematics</span> Mathematics taught in primary and secondary school

Elementary mathematics, also known as primary or secondary school mathematics, is the study of mathematics topics that are commonly taught at the primary or secondary school levels around the world. It includes a wide range of mathematical concepts and skills, including number sense, algebra, geometry, measurement, and data analysis. These concepts and skills form the foundation for more advanced mathematical study and are essential for success in many fields and everyday life. The study of elementary mathematics is a crucial part of a student's education and lays the foundation for future academic and career success.

<i>The Whetstone of Witte</i> Book by Robert Recorde

The Whetstone of Witte is the shortened title of Robert Recorde's mathematics book published in 1557, the full title being The whetstone of witte, whiche is the seconde parte of Arithmetike: containyng thextraction of Rootes: The Coßike practise, with the rule of Equation: and the woorkes of Surde Nombers. The book covers topics including whole numbers, the extraction of roots and irrational numbers. The work is notable for containing the first recorded use of the equals sign and also for being the first book in English to use the plus and minus signs.

<span class="mw-page-title-main">Irrational number</span> Number that is not a ratio of integers

In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length, no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.

In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact.

<span class="mw-page-title-main">Sixth power</span>

In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:

In arithmetic and algebra the seventh power of a number n is the result of multiplying seven instances of n together. So:

References

See also