Prime factor exponent notation

Last updated

In his 1557 work The Whetstone of Witte , British mathematician Robert Recorde proposed an exponent notation by prime factorisation, which remained in use up until the eighteenth century and acquired the name Arabic exponent notation. The principle of Arabic exponents was quite similar to Egyptian fractions; large exponents were broken down into smaller prime numbers. Squares and cubes were so called; prime numbers from five onwards were called sursolids.

Although the terms used for defining exponents differed between authors and times, the general system was the primary exponent notation until René Descartes devised the Cartesian exponent notation, which is still used today.

This is a list of Recorde's terms.

Cartesian indexArabic indexRecordian symbolExplanation
1Simple
2Square (compound form is zenzic)z
3Cubic&
4Zenzizenzic (biquadratic)zzsquare of squares
5First sursolidßfirst prime exponent greater than three
6Zenzicubicz&square of cubes
7Second sursolidsecond prime exponent greater than three
8 Zenzizenzizenzic (quadratoquadratoquadratum)zzzsquare of squared squares
9Cubicubic&&cube of cubes
10Square of first sursolidsquare of five
11Third sursolidthird prime number greater than 3
12Zenzizenzicubiczz&square of square of cubes
13Fourth sursolid
14Square of second sursolidzBßsquare of seven
15Cube of first sursolidcube of five
16Zenzizenzizenzizenziczzzz"square of squares, squaredly squared"
17Fifth sursolid
18Zenzicubicubicz&&
19Sixth sursolid
20Zenzizenzic of first sursolidzzß
21Cube of second sursolid&Bß
22Square of third sursolidzCß

By comparison, here is a table of prime factors:

1 20
1 unit
2 2
3 3
4 22
5 5
6 2·3
7 7
8 23
9 32
10 2·5
11 11
12 22·3
13 13
14 2·7
15 3·5
16 24
17 17
18 2·32
19 19
20 22·5
21 40
21 3·7
22 2·11
23 23
24 23·3
25 52
26 2·13
27 33
28 22·7
29 29
30 2·3·5
31 31
32 25
33 3·11
34 2·17
35 5·7
36 22·32
37 37
38 2·19
39 3·13
40 23·5
41 60
41 41
42 2·3·7
43 43
44 22·11
45 32·5
46 2·23
47 47
48 24·3
49 72
50 2·52
51 3·17
52 22·13
53 53
54 2·33
55 5·11
56 23·7
57 3·19
58 2·29
59 59
60 22·3·5
61 80
61 61
62 2·31
63 32·7
64 26
65 5·13
66 2·3·11
67 67
68 22·17
69 3·23
70 2·5·7
71 71
72 23·32
73 73
74 2·37
75 3·52
76 22·19
77 7·11
78 2·3·13
79 79
80 24·5
81 100
81 34
82 2·41
83 83
84 22·3·7
85 5·17
86 2·43
87 3·29
88 23·11
89 89
90 2·32·5
91 7·13
92 22·23
93 3·31
94 2·47
95 5·19
96 25·3
97 97
98 2·72
99 32·11
100 22·52

See also

Hutton, Chas, Mathematical dictionary (PDF), p. 224