Eighth power

Last updated

In arithmetic and algebra the eighth power of a number n is the result of multiplying eight instances of n together. So:

Contents

n8 = n × n × n × n × n × n × n × n.

Eighth powers are also formed by multiplying a number by its seventh power, or the fourth power of a number by itself.

The sequence of eighth powers of integers is:

0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176, 152587890625 ... (sequence A001016 in the OEIS )

In the archaic notation of Robert Recorde, the eighth power of a number was called the "zenzizenzizenzic". [1]

Algebra and number theory

Polynomial equations of degree 8 are octic equations. These have the form

The smallest known eighth power that can be written as a sum of eight eighth powers is [2]

The sum of the reciprocals of the nonzero eighth powers is the Riemann zeta function evaluated at 8, which can be expressed in terms of the eighth power of pi:

( OEIS:  A013666 )

This is an example of a more general expression for evaluating the Riemann zeta function at positive even integers, in terms of the Bernoulli numbers:

Physics

In aeroacoustics, Lighthill's eighth power law states that the power of the sound created by a turbulent motion, far from the turbulence, is proportional to the eighth power of the characteristic turbulent velocity. [3] [4]

The ordered phase of the two-dimensional Ising model exhibits an inverse eighth power dependence of the order parameter upon the reduced temperature. [5]

The Casimir–Polder force between two molecules decays as the inverse eighth power of the distance between them. [6] [7]

See also

Related Research Articles

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The original such product was given for the sum of all positive integers raised to a certain power as proven by Leonhard Euler. This series and its continuation to the entire complex plane would later become known as the Riemann zeta function.

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Divisor function</span> Arithmetic function related to the divisors of an integer

In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

<span class="mw-page-title-main">Dirichlet eta function</span> Function in analytic number theory

In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. That is, the number

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.

<span class="mw-page-title-main">Riemann Xi function</span>

In mathematics, the Riemann Xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.

In mathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.

References

  1. Womack, David (2015). "Beyond tetration operations: their past, present and future". Mathematics in School. 44 (1): 23–26. JSTOR   24767659.
  2. Quoted in Meyrignac, Jean-Charles (2001-02-14). "Computing Minimal Equal Sums Of Like Powers: Best Known Solutions" . Retrieved 2019-12-18.
  3. Lighthill, M. J. (1952). "On sound generated aerodynamically. I. General theory". Proc. R. Soc. Lond. A . 211 (1107): 564–587. Bibcode:1952RSPSA.211..564L. doi:10.1098/rspa.1952.0060. S2CID   124316233.
  4. Lighthill, M. J. (1954). "On sound generated aerodynamically. II. Turbulence as a source of sound". Proc. R. Soc. Lond. A . 222 (1148): 1–32. Bibcode:1954RSPSA.222....1L. doi:10.1098/rspa.1954.0049. S2CID   123268161.
  5. Kardar, Mehran (2007). Statistical Physics of Fields . Cambridge University Press. p.  148. ISBN   978-0-521-87341-3. OCLC   1026157552.
  6. Casimir, H. B. G.; Polder, D. (1948). "The influence of retardation on the London-van der Waals forces". Physical Review . 73 (4): 360. Bibcode:1948PhRv...73..360C. doi:10.1103/PhysRev.73.360.
  7. Derjaguin, Boris V. (1960). "The force between molecules". Scientific American . 203 (1): 47–53. Bibcode:1960SciAm.203a..47D. doi:10.1038/scientificamerican0760-47. JSTOR   2490543.