Equidigital number

Last updated
Demonstration, with Cuisenaire rods, that the composite number 10 is equidigital: 10 has two digits, and 2 x 5 has two digits (1 is excluded) Composite number Cuisenaire rods 10.svg
Demonstration, with Cuisenaire rods, that the composite number 10 is equidigital: 10 has two digits, and 2 × 5 has two digits (1 is excluded)

In number theory, an equidigital number is a natural number in a given number base that has the same number of digits as the number of digits in its prime factorization in the given number base, including exponents but excluding exponents equal to 1. [1] For example, in base 10, 1, 2, 3, 5, 7, and 10 (2 × 5) are equidigital numbers (sequence A046758 in the OEIS ). All prime numbers are equidigital numbers in any base.

Contents

A number that is either equidigital or frugal is said to be economical.

Mathematical definition

Let be the number base, and let be the number of digits in a natural number for base . A natural number has the prime factorisation

where is the p-adic valuation of , and is an equidigital number in base if

Properties

See also

Notes

  1. Darling, David J. (2004). The universal book of mathematics: from Abracadabra to Zeno's paradoxes. John Wiley & Sons. p. 102. ISBN   978-0-471-27047-8.

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

<i>e</i> (mathematical constant) 2.71828..., base of natural logarithms

The number e, also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithms. It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series

In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial:

<span class="mw-page-title-main">Logarithm</span> Inverse of the exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number x to the base b is the exponent to which b must be raised, to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

The tables contain the prime factorization of the natural numbers from 1 to 1000.

In number theory, a Smith number is a composite number for which, in a given number base, the sum of its digits is equal to the sum of the digits in its prime factorization in the given number base. In the case of numbers that are not square-free, the factorization is written without exponents, writing the repeated factor as many times as needed.

In mathematics, a harshad number in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base n are also known as n-harshad numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit harṣa (joy) + da (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977.

In number theory, a self number or Devlali number in a given number base is a natural number that cannot be written as the sum of any other natural number and the individual digits of . 20 is a self number, because no such combination can be found. 21 is not, because it can be written as 15 + 1 + 5 using n = 15. These numbers were first described in 1949 by the Indian mathematician D. R. Kaprekar.

In mathematics, the digit sum of a natural number in a given number base is the sum of all its digits. For example, the digit sum of the decimal number would be

In number theory, a Dudeney number in a given number base is a natural number equal to the perfect cube of another natural number such that the digit sum of the first natural number is equal to the second. The name derives from Henry Dudeney, who noted the existence of these numbers in one of his puzzles, Root Extraction, where a professor in retirement at Colney Hatch postulates this as a general method for root extraction.

In number theory, a narcissistic number in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

The Copeland–Erdős constant is the concatenation of "0." with the base 10 representations of the prime numbers in order. Its value, using the modern definition of prime, is approximately

A sum-product number in a given number base is a natural number that is equal to the product of the sum of its digits and the product of its digits.

In number theory, an extravagant number (also known as a wasteful number) is a natural number in a given number base that has fewer digits than the number of digits in its prime factorization in the given number base (including exponents). For example, in base 10, 4 = 22, 6 = 2×3, 8 = 23, and 9 = 32 are extravagant numbers (sequence A046760 in the OEIS).

In number theory, a frugal number is a natural number in a given number base that has more digits than the number of digits in its prime factorization in the given number base (including exponents). For example, in base 10, 125 = 53, 128 = 27, 243 = 35, and 256 = 28 are frugal numbers (sequence A046759 in the OEIS). The first frugal number which is not a prime power is 1029 = 3 × 73. In base 2, thirty-two is a frugal number, since 32 = 25 is written in base 2 as 100000 = 10101.

In number theory and mathematical logic, a Meertens number in a given number base is a natural number that is its own Gödel number. It was named after Lambert Meertens by Richard S. Bird as a present during the celebration of his 25 years at the CWI, Amsterdam.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:

References